
IPv6 in Practice

Benedikt Stockebrand

IPv6
in Practice
A Unixer’s Guide to the
Next Generation Internet

With 53 Figures

123

Benedikt Stockebrand

contact@benedikt-stockebrand.net
www.benedikt-stockebrand.net

Library of Congress Control Number: 2006934616

ISBN-10 3-540-24524-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-24524-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable for prosecution under
the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typesetting: By the Author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL - 5 4 3 2 1 0

To my parents

Preface

In the Beginning there was—Frustration

Back in early 2000 I first tried to get seriously started with IPv6. But I
couldn’t find any documentation that helped me to understand how to make
it work in my usual environment. Being swamped with work at my then job
I eventually gave up, frustrated for the first time.

In 2002 Silvia Hagen published the first edition of “IPv6 Essentials” [52].
Expecting a hands-on guide to IPv6 I bought it, only to be frustrated again:
The book told me a lot more about the IPv6 protocol than I expected but
virtually nothing about how to make it work.

This time I didn’t give up. I read the book and learned a lot about the
underlying concepts. With this knowledge I managed to understand the IPv6-
related documentation available for individual Unixen, like Peter Bieringer’s
Linux IPv6 Howto [10] or the FreeBSD and Solaris online documentation.

It was much like studying mechanical engineering just to learn how to ride
a bicycle. So I started teaching others how to get IPv6 up and running at con-
ferences and various training courses. During that time I wrote a first training
manuscript and an article series [104, 105, 106] on IPv6 administration.

Since then IPv6 has noticeably matured. Not only have the core protocol
specifications become reasonably stable, but the actual implementations have
reached a usable state. This made it possible to turn the training course
manuscript into something less volatile: The book you are now reading.

What This Book is Not About
But Why You Might Want to Read It Anyway

This book is not about

• basic Unix and TCP/IP network administration,

• what the fifth bit in the fifty-sixth byte of a neighbor discovery request
packet means,

• how to make IPv6 work on dedicated router hardware, or Microsoft Win-
dows, or

• any of the fancy new features people talk or write their PhD thesis about
but never bother to implement at a production-grade level.

Instead it addresses the Unix-based implementations available today. It tries
to tell you how to sit on a bicycle, put your feet on the pedals and get rolling
without hurting yourself and innocent bystanders more than necessary—and
never mind how that fancy gearbox1 works.

So if you want to learn about IPv6 by making it work, this book is written
for you.

The Unixen Considered

This book itself explains how to configure and run IPv6 on three different
Unixen: Debian GNU/Linux, FreeBSD and Solaris. These three differ in
many respects:

Debian Sarge Since the Sarge release most applications support IPv6, but
Linux in general is still missing some important IPv6 features, like an IPv6-
capable port mapper, so some features available with the other Unixen are
still missing. Additionally, configuring IPv6 in the network configuration files
is still awkward.

There is work underway to replace the current IPv6 implementation with a
port of the KAME stack from the BSDs; the project is called USAGI. At this
time the USAGI stack is still considered experimental and doesn’t generally
ship with Linux distributions, so we don’t consider it yet.

FreeBSD 6.1 FreeBSD was the primary development environment of the
KAME project, which implemented IPv6 for the BSDs.

The IPv6 implementation has been integrated into the system quite
smoothly. Some deprecated features, like automatic tunnels, have been
silently removed, which may cause occasional problems with older installa-
tions that still want to use these features.

Solaris 10 IPv6 support has been available with Solaris for some time and
is quite mature. The major drawbacks are that in some cases it doesn’t im-
plement all the more recent changes in the specifications and that its handling
is sometimes noticeably different than with the other Unixen. 1

Together these three give a fair overview of IPv6 with Unix. Beyond
them, a number of other Unixen, as well as updates to the three shown in this

1 See http://www.rohloff.de/en/technical/speedhub/index.html if you really
want to know about the gearbox.

VIII

book, will be covered in online supplements available from my home page at
http://www.benedikt-stockebrand.net/ together with an errata list and
an online copy of the book’s index. So if your Personal Pet Unix is missing,
take a look there and you may find what you need.

How to Read This Book

Since you won’t learn how to ride a bicycle without having a bicycle at hand,
you will need a test environment. It is easiest to use virtual machines, like
Xen or (as in my case) VMware.

Throughout this book you will see a variety of Unixen in a number of test
setups, plus a few more Unixen at my home page. I recommend you first
stick with your Personal Pet Unix. Dealing with IPv6 will be difficult enough
in a few cases; using an unfamiliar Unix at the same time will only cause
unnecessary pain.

The chapters are arranged in a way to put things to work as soon as
possible.

The first part deals with fundamental topics that are virtually impossible
to skip. There are however sections called either “Inside IPv6” or “Packet
Filter Considerations” which you probably want to ignore on first reading.
The “Inside IPv6” sections provide some details of the inner workings of IPv6
that are sometimes useful for debugging or just interesting by themselves. The
“Packet Filter Considerations” provide additional information necessary to
set up a packet filter, from protocol details like port numbers to architectural
suggestions.

The following parts address topics that may be irrelevant to you, so feel
free to skip whatever you don’t need. If you care about security however, a
basic understanding of these topics and their security implications is essential,
so you want at least to skim these parts.

Finally, there are two appendices, one giving a crash course on DNS ad-
ministration with BIND and the other providing a list of various well-known
addresses and port numbers, plus a bibliography and an index.

Security Considerations

When you do your very first steps with IPv6 you don’t want to bother about
packet filter configuration and other security measures just yet. Neither do
you want to disrupt network operation within your company network.

So please first use IPv6 in a test-only environment disconnected from pro-
duction environments or the Internet. There are some interactions between
IPv4 and IPv6 and we can’t deal with them right from the start.

If you really have to start with IPv6 in a production environment, read the
first three parts in full, so you know about the most relevant security issues

IX

with IPv6 itself and the interactions between IPv4 and IPv6. Only afterwards
start to use IPv6 in your environment.

Trying things in a test environment, making them work, and only after-
wards dealing with packet filters and other security issues is obviously prefer-
able; use packet filters from the start only if you absolutely have to.

Typographic Conventions

Throughout the book you will find sections that deal with implementation-
specific details. They look like this:

Debian Sarge is a Linux distribution particularly popular with Linux ad-
ministrators and developers.

FreeBSD 6.1 comes with the KAME stack, probably the most complete
IPv6 implementation available.

Solaris 10 has implemented IPv6 quite early. IPv6 support is well inte-
grated, but sometimes the handling is slightly unusual. 2

The number at the bottom refers to the related section in the online sup-
plements covering additional implementations.

Shell transcripts (“screen shots”) look like this unfortunate specimen:

nice --20 rm -rf / &

fg

^C^C^C^C^C^C^[^[^[^[^[^\^\^\^\^\^\^\^\

Following Bourne shell standards a hash mark (“#”) as a prompt indicates
that the commands shown must be run as root while a dollar sign (“$”) implies
that the commands don’t require root privileges.

File listings look like this:

/etc/resolv.conf

domain example.com

nameserver 2001:db8::1

Occasionally you will find variables within both shell transcripts and file list-
ings, appearing as “〈Interface Name〉”. More often however you will find ex-
amples like “eth0” instead. The highlighted background marks those items
that you will likely need to adapt to your needs or that will look different on
your system.

When we’ve set up something, there is usually a checklist following. It
shows how to ensure in a systematic way that everything works as expected.
Let’s say that you have just logged in:

� Read the “Last logged in” message to make sure nobody else used your
account since you last logged in.

X

� Check your disk quotas to make sure you still have enough space left.
� Read your e-mail for messages from your administrator (if you are a

user) or your users (if you are an administrator).

These lists usually don’t tell you in detail how to fix a problem, but following
them usually helps either to ensure that something works as expected or to
find out more precisely what the actual problem is.

Network plans look like figure 0.1. Routers are drawn as circles while
hosts (or “non-routers”) are square shaped—we defer the exact definition of
hosts and routers to section 4.3.2. Individual subnets are always drawn as
oblong boxes, even though the coax cabling this presentation is derived from
is rarely used anymore. Contiguous sets of subnets and routers like the Big
Bad Internet above are called clouds and drawn as such.

DMZ (192.0.2.0/24) Inner Network (192.168.0.0/24)

Big Bad Internet (BBI)

HTTP
Proxy

DNS
Proxy

Packet
Filtering
Router

Internal
File

Server

Standard
Clients

Fig. 0.1. A sample network plan

Whenever we look at how IPv6 works, we’ll see protocol flow diagrams
that look like figure 0.2. This example shows the TCP “three way handshake”,
which applies to IPv6 as well as IPv4.

Client Server

SYN

SYN/ACK

ACK

Fig. 0.2. The TCP three way handshake as a protocol flow diagram

XI

Occasionally we do things that are potentially insecure or address security
problems in existing implementations. Whenever you see a warning like

For your first attempt to ride a bicycle choose a location
easily and quickly accessible to an ambulance but away from
major traffic. Make sure to wear a helmet, gloves, properly
padded protective clothes and safety goggles.

please make sure you understand what it means before you proceed. Similarly,
open problems that are yet unresolved look like this:

So far, no reliable strategy is known how to learn bicycling without
getting more or less seriously hurt. Research is still continuing and
there is hope that virtual reality will eventually solve this problem.

?

Acknowledgments

This book wouldn’t have happened without a number of people who helped
me through a number of difficult stages.

Before I even started to think about writing this book, the unnamed par-
ticipants of various workshops showed me what aspects of IPv6 they were
interested in and let me refine the organization and presentation of IPv6 ad-
ministration in the way that this book is written.

René Schönfeldt and Bert Ungerer convinced me to write an article series
for iX magazine and made me believe that it might just be feasible to turn
the training manuscripts into a book. Silvia Hagen, who didn’t even know
me at that time, told me quite honestly that she didn’t think it was; she was
right in 2004 and almost right in 2006.

Dr Frank Schmidt convinced me to start writing. When he left Springer,
Jutta-Maria Fleschutz took over his job of guiding a certain debutant writer
through the book-writing process and helped me to deliver a printable
manuscript.

All that time the JOIN IPv6 mailing list was a low-volume high-signal
forum that repeatedly helped me out when I was stuck or unsure if I was
heading in the right direction. Especially the discussions with Gert Doering,
Jeroen Massar, Pim van Pelt and the now disbanded JOIN IPv6 team were
immensely helpful to me.

Dr Peter Bieringer, Reiner Krapohl and Wolfgang Zenker spent hours and
days of proofreading the raw manuscript, providing a treasure of comments
and suggestions. They pointed out various mistakes and a number of ambigu-
ous or just awkward wordings without dispiriting me. Of course, all remaining
mistakes are mine alone.

Thank you all for your support.

Darmstadt, July 2006 Benedikt Stockebrand

XII

About the Author

Benedikt Stockebrand received his “Diplom-Informatiker” degree at Dort-
mund University in Germany. He has been using, operating and designing
Unix-centric TCP/IP networks since 1989.

His professional career started as a programmer and system and network
administrator. Having gathered some experience, he gradually shifted his fo-
cus to system architecture and design, turning whatever software into perfor-
mant, scalable, reliable, secure and generally datacenter-ready environments.
During this time he also worked as an instructor, enjoying it so much that in
2002 he changed his professional focus again and started to work full-time as a
trainer, consultant and occasional IT journalist all over the world, specializing
in the operational aspects of IPv6.

In his spare time he travels a lot—so far alone 21 000 km (13 000 miles)
by bicycle—and occasionally goes scuba diving.

If you want to contact him, for example if you have a question, found an
error in this book or look for a freelance IPv6 trainer, he can be reached both
by e-mail as <contact@benedikt-stockebrand.de> or through his personal
web site at http://www.benedikt-stockebrand.net/.

XIII

Contents

Part I Getting Started

1 A Quick Overview of IPv6 . 3
1.1 Terminology: IP, IPv4, IPv6 and the Internet 3
1.2 The “IPv6 Sales Pitch” . 3
1.3 IPv6 and the TCP/IP Stack . 6

2 Preparing for IPv6 . 9
2.1 Obtaining Our Own IPv6 Address Prefix 9
2.2 Setting Up Our Test Environment . 10

2.2.1 Choosing the Hardware . 10
2.2.2 Supplementing the System Installation 11
2.2.3 Backup and Disaster Recovery . 12

2.3 Security Precautions . 12
2.4 Kernel IPv6 Support . 13

2.4.1 Enabling IPv6 Within the Kernel 13
2.4.2 IPv6-related Kernel Variables . 15

2.5 Packet Filter Considerations . 16
2.5.1 Available Implementations . 16
2.5.2 Basic Configuration . 17

3 IPv6 Address Basics . 21
3.1 Size Matters . 21
3.2 Address Notation . 22
3.3 Scopes . 24
3.4 Unicast Addresses . 25

3.4.1 Link-local Unicast Addresses . 26
3.4.2 Site-local and Unique-local Unicast Addresses 27
3.4.3 Global Scope Unicast Addresses . 28

3.5 Multicast Addresses . 29
3.6 Anycast Addresses . 30

Contents

3.7 Inside IPv6: The IPv6 Headers . 31
3.8 Address Allocation Policy and the Routing Table Problem 32
3.9 References . 34
3.10 Packet Filter Considerations . 34

4 Address Configuration . 35
4.1 Static Address Configuration . 35

4.1.1 Temporary Configuration . 36
4.1.2 Persistent Configuration . 38

4.2 Inside IPv6: Neighbor Discovery (ND) . 40
4.2.1 Neighbor Solicitations (NS) and Advertisements (NA) . 40
4.2.2 Neighbor Unreachability Detection (NUD) 41
4.2.3 Duplicate Address Detection (DAD) 42

4.3 Stateless Address Autoconfiguration (SAC) 43
4.3.1 The Problems with DHCP . 43
4.3.2 Autoconfiguration Concepts . 44
4.3.3 Router Configuration . 46
4.3.4 Host Configuration . 49

4.4 Mixing Static and Automatic Configuration 50
4.5 Inside IPv6: Autoconfiguration Details . 51

4.5.1 Address States . 51
4.5.2 Router Solicitations (RS) and Advertisements (RA) . . . 52
4.5.3 Ethernet Addresses and Interface IDs 53

4.6 Testing and Debugging . 54
4.7 Packet Filter Considerations . 55

4.7.1 From Stateless Filtering to Rewriting Filters 55
4.7.2 Packet Sanitation . 56
4.7.3 Packet Spoofing (Ingress) Filters 56
4.7.4 Essential ICMPv6 Packets . 57
4.7.5 Sample Filter Configurations . 57
4.7.6 Testing the Filter Configuration . 63

5 IPv6 and the Domain Name System (DNS) 65
5.1 Getting Started . 65

5.1.1 Naming Conventions . 65
5.1.2 The DNS Test Setup . 66
5.1.3 Local Address Management with /etc/hosts 67

5.2 IPv6 Addresses in the DNS . 68
5.2.1 Resolver Configuration . 69
5.2.2 Enabling IPv6 on the DNS Server 70
5.2.3 Forwarder Configuration vs. a Fake Root Zone 70
5.2.4 Forward Zones on a Primary Server 71
5.2.5 Reverse Zones on a Primary Server 73
5.2.6 Secondary Servers . 75
5.2.7 Testing and Debugging . 75

XVI

Contents

5.2.8 Annoying Legacies . 75
5.3 Open Issues . 77
5.4 Packet Filter Considerations . 77

5.4.1 Filter Rules . 77
5.4.2 DNS Names in Filter Configurations 78

6 Essential Network Services . 81
6.1 Levels of IPv6 Support . 81
6.2 The Inetd Super Daemon . 82
6.3 Basic Debugging—Tools and Procedures 86
6.4 The Secure Shell (OpenSSH) . 88
6.5 Time Synchronization with the Network Time Protocol (NTP) 89
6.6 Event Logging with Syslog . 91
6.7 E-mail: The Simple Mail Transfer Protocol (SMTP) 92
6.8 The World Wide Web: HTTP and HTTPS 93

6.8.1 IPv6 Addresses in URLs . 93
6.8.2 Web Browsers . 94
6.8.3 The Apache Web Server . 94
6.8.4 Web Proxies . 95

6.9 The Network File System (NFS) . 97
6.10 Other Services . 98
6.11 Packet Filter Considerations . 99

6.11.1 TCP Services . 99
6.11.2 UDP Services . 100
6.11.3 Performance Tuning . 101

7 Unicast Routing Basics . 103
7.1 Hosts and ICMPv6 Redirects . 103
7.2 Inside IPv6: ICMPv6 Redirect Protocol Details 104
7.3 Static Routing . 106
7.4 Dynamic Routing with RIPng . 108
7.5 Testing and Debugging . 110
7.6 Inside IPv6: RIPng Protocol Details . 111
7.7 Routing Architecture Strategies . 112

7.7.1 Basic Considerations . 112
7.7.2 Static or Dynamic Routing? . 113
7.7.3 Network Redundancy . 113
7.7.4 Router Performance Issues . 115
7.7.5 Performance Issues with ICMPv6 Redirects 115
7.7.6 Inconsistent Prefix Advertisements 116
7.7.7 Security Aspects . 117

7.8 Mixing Static and Dynamic Routing . 118
7.9 Inside IPv6: Maximum Transmission Unit (MTU)

Improvements . 120
7.10 Packet Filter Considerations . 120

XVII

7.10.1 Source Address Validation (Ingress Filtering) 121
7.10.2 Forwarding Filter Rules . 122
7.10.3 Dealing with ICMPv6 Redirects . 123
7.10.4 Packet Filters and Dynamic Routing 123

Part II IPv4/IPv6 Interoperation

8 Interoperation Concepts . 127
8.1 Dual Stack Configuration and Operation 127
8.2 Interoperation Problems . 128
8.3 Dual Stack Everything . 128
8.4 Dual Stack Servers Only . 128
8.5 Connecting to Foreign IPv4-only Servers 129
8.6 Packet Filter Considerations . 129

9 Application Level Gateways . 131
9.1 Domain Name Service (DNS) . 131
9.2 Network Time Protocol (NTP) . 131
9.3 Syslog . 132
9.4 Simple Mail Transfer Protocol (SMTP) . 132
9.5 Hypertext Transfer Protocol (HTTP) . 132
9.6 Packet Filter Considerations . 133

10 Protocol Translation . 135
10.1 Protocol Translation Concepts . 135
10.2 Setting Up a Protocol Translator . 136
10.3 Operational Issues . 139
10.4 Packet Filter Considerations . 140

Part III Tunnels and Related Topics

11 Tunnel Basics . 143
11.1 Concepts and Terminology . 143
11.2 Tunnel Types . 144
11.3 Common Scenarios . 145
11.4 Operational Issues . 145
11.5 Security Considerations . 146
11.6 Choosing the Proper Tunnel . 147

12 IP-in-IP Encapsulation . 149
12.1 Configured and Automatic (6in4) Tunnels 150

12.1.1 The Link-local Address Problem . 151
12.1.2 Configured Tunnels . 151

XVIII Contents

Contents

12.1.3 Routing Through a Tunnel . 156
12.1.4 Automatic Tunnels . 158
12.1.5 Security Considerations . 159

12.2 6to4 Tunnels . 159
12.2.1 6to4 Tunnel Hosts . 160
12.2.2 Tunnels Between 6to4 Sites . 162
12.2.3 Tunnels Between 6to4 and Native IPv6 Sites 163
12.2.4 Connecting to the Internet6: Default Relay Routers . . . 165
12.2.5 Public Relay Routers . 166
12.2.6 Operational Issues . 167
12.2.7 Security Considerations . 169

12.3 Tunneling Over IPv6 Networks . 170
12.3.1 IPv4-in-IPv6 (4in6) Encapsulation 170
12.3.2 IPv6 in IPv6 (6in6) Encapsulation 172

12.4 6over4 Tunnels . 176
12.5 The Intra-site Automatic Tunnel Addressing Protocol

(ISATAP) . 177
12.6 Packet Filter Considerations . 177

12.6.1 Fundamental Problems . 178
12.6.2 Manageable Special Cases . 178
12.6.3 Configurations . 179

13 Other Tunneling Methods . 181
13.1 GRE . 181
13.2 Teredo . 182
13.3 OpenVPN . 183
13.4 Packet Filter Considerations . 187

14 Advanced Tunneling Issues . 189
14.1 Tunnel Brokers . 189
14.2 Tunnels and NAT Gateways . 190

14.2.1 Strategies . 191
14.2.2 Configurations . 191

14.3 Nested Tunnels and Tunnel Loops . 193
14.3.1 Network Meltdown from a Tunnel Loop 193
14.3.2 Tunnel Loop Causes . 194
14.3.3 Preventing Tunnel Loops . 194

14.4 Tunnel Parameter Tuning . 195
14.4.1 The Maximum Transmission Unit (MTU) 195
14.4.2 Hop Limit and Time to Live (TTL) Parameters 196

14.5 Mixing Tunnels and Native Connectivity 197

XIX

15 The Point-to-Point Protocol (PPP) . 199
15.1 Implementations and Installation . 199
15.2 Basic Configuration . 200
15.3 Adding Routable Addresses and Static Routes 202
15.4 Dynamic Routing Across PPP Links . 204
15.5 PPP and Autoconfiguration . 205
15.6 Beyond a Single Interface: Operational Issues 206
15.7 Packet Filter Considerations . 207

Part IV Additional Base Features

16 More on Addresses . 211
16.1 Site-local and Unique-local Addresses . 211

16.1.1 From Site-local to Unique-local Addresses 211
16.1.2 What is a “Site”? . 212
16.1.3 When to Use Unique-local Addresses 212
16.1.4 Routing Configuration . 213
16.1.5 DNS Setups . 213

16.2 IPv4-mapped IPv6 Addresses . 214
16.2.1 Making an IPv6 Server Support IPv4 214
16.2.2 Operational Aspects . 215

16.3 Dynamically Changing Interface IDs . 216
16.3.1 The “Road Warrior” Problem . 216
16.3.2 Temporary Addresses . 216
16.3.3 Performance Considerations . 217
16.3.4 Configuration and Operation . 218
16.3.5 Using Temporary Addresses . 219

16.4 Address Selection Algorithms . 220
16.4.1 The Address Selection Policy Table 221
16.4.2 Source Address Selection . 221
16.4.3 Destination Address Ordering . 222
16.4.4 Tuning the Policy Table . 222

16.5 Stateless Autoconfiguration Tuning . 223
16.5.1 Tuning the Advertising Interval . 225
16.5.2 Per-interface Information . 226
16.5.3 Subnet Prefix Information . 228
16.5.4 Expiring a Prefix From a Subnet 230

16.6 The Router Renumbering Protocol . 231

17 Advanced Routing with Quagga . 233
17.1 The Quagga Routing Framework . 233

17.1.1 Features and Peculiarities . 233
17.1.2 Supported Routing Protocols . 235
17.1.3 Installing Quagga . 235

ContentsXX

Contents

17.1.4 Using the Virtual Terminal Interface 239
17.1.5 Interface and Static Route Configurations 240
17.1.6 Router Advertisements . 241
17.1.7 Debugging Capabilities . 241

17.2 RIPng Revisited . 242
17.2.1 Enabling RIPng Support with Quagga 242
17.2.2 Limited Route Distribution . 243
17.2.3 Metric Tuning . 244
17.2.4 Route Aggregation . 245
17.2.5 Non-standard Timing Parameters 245

17.3 Open Shortest Path First (OSPF), version 3 246
17.3.1 Features and Limitations . 246
17.3.2 Basic Concepts . 247
17.3.3 Essential Configuration . 247
17.3.4 A Simple Test Setup . 249
17.3.5 Understanding OSPF Status Information 250
17.3.6 Timing Considerations . 252
17.3.7 Failover Tests . 254
17.3.8 The Cost Metric . 255
17.3.9 Scalability, OSPF Areas and Route Aggregation 256
17.3.10 Other OSPF Features and Further Reading 259
17.3.11 Operational Issues . 259

17.4 Beyond RIP and OSPF . 260
17.4.1 The Border Gateway Protocol (BGP) 260
17.4.2 Other Routing Protocols . 261
17.4.3 IPv6-independent Quagga Features 261

17.5 Packet Filter Considerations . 262

18 Multicasts Beyond the Link-local Scope 263
18.1 A Closer Look at Multicasts . 263

18.1.1 Terminology . 263
18.1.2 Multicast Diagnostics . 264
18.1.3 Inside IPv6: Multicast Listener Discovery (MLD) 266

18.2 Protocol Independent Multicast—Dense Mode (PIM-DM) 271
18.2.1 Installation . 271
18.2.2 Essential Configurations: Filters . 272
18.2.3 Inside IPv6: More on Multicast Listener Discovery 273
18.2.4 Inside IPv6: The PIM-DM Protocol 275
18.2.5 Advantages and Limitations . 277

18.3 Protocol Independent Multicast—Sparse Mode (PIM-SM) 278
18.3.1 Installation and Basic Configuration 278
18.3.2 Bootstrap Routers . 280
18.3.3 Running PIM-SM . 281
18.3.4 Inside IPv6: The PIM-SM Protocol 282
18.3.5 Source-specific Multicasts (SSM) 283

XXI

Contents

18.3.6 Embedded Rendezvous Point Addresses 284
18.4 Multicast Address Allocation . 285
18.5 Operational Issues . 286
18.6 Packet Filter Considerations . 287
18.7 Advanced Topics and Further Reading . 288

19 The Dynamic Host Configuration Protocol (DHCPv6) 289
19.1 Installation . 289
19.2 Stateless DHCPv6 . 291

19.2.1 The First Step: Resolver Configuration 291
19.2.2 Adding More Stateless Data . 293

19.3 Address Management with DHCPv6 . 294
19.4 DHCPv6 Across Subnet Borders . 295

19.4.1 Setting Up a DHCP Relay . 295
19.4.2 Multicasts from Relay to Server . 296

19.5 Interoperation Problems . 297
19.6 Conceptual Security Aspects . 297
19.7 Packet Filter Considerations . 298

20 Bridging the DNS Gap . 299
20.1 From Autoconfiguration to the DNS . 299
20.2 Solution Strategies . 299

20.2.1 “But Only Servers Need DNS Entries” 300
20.2.2 Manual DNS Entries . 300
20.2.3 The DHCP Non-solution . 300
20.2.4 Dynamic DNS (DDNS) Updates . 301

20.3 A Preliminary Implementation . 301
20.3.1 Configuring BIND for Dynamic Updates 302
20.3.2 Creating and Installing TSIG Keys 303
20.3.3 Updating the DNS Forward Zone Records 304
20.3.4 Maintaining DNS Reverse Zones . 304
20.3.5 Security Considerations . 305

20.4 Operational Issues . 306
20.5 Future Work . 307

Part V New Functionalities

21 IP Security (IPsec) . 311
21.1 Basic Concepts . 311

21.1.1 Authentication and Encryption . 311
21.1.2 Transport and Tunnel Mode . 312
21.1.3 Policy and Key Management Within the Kernel 312
21.1.4 The Internet Key Exchange Protocol (IKE) 313
21.1.5 References . 314

XXII

Contents

21.2 Open Problems . 315
21.2.1 Inherent Limitations . 315
21.2.2 Implementation Issues . 316

21.3 Packet Filter Considerations . 317

22 Mobile IPv6 (MIPv6) . 319
22.1 Concepts . 319

22.1.1 Basic Mobile IPv6 . 319
22.1.2 Telling the Home Agent: Binding Updates 321
22.1.3 Bidirectional Tunneling and Route Optimization 321
22.1.4 Network Mobility (NEMO) . 322
22.1.5 Fast Handovers . 323
22.1.6 Hierarchical Mobile IPv6 . 323

22.2 Open Problems . 323
22.2.1 Available Implementations . 324
22.2.2 Unanswered Security Questions . 324

22.3 Further Reading . 325

23 Quality of Service (QoS) . 327
23.1 Concepts . 327

23.1.1 Integrated Services (IntServ) . 328
23.1.2 Differentiated Services (DiffServ) 328

23.2 Is It Necessary? . 329
23.2.1 Technical Considerations . 329
23.2.2 Political and Economic Aspects . 330
23.2.3 Common Misunderstandings . 330

23.3 Further Reading . 331

Part VI Architectural and Operational Topics

24 Renumbering Procedures . 335
24.1 Preparations . 335
24.2 Soft Renumberings with a Grace Period . 336

24.2.1 Deploying a New Prefix . 336
24.2.2 Revoking an Old Prefix . 338

24.3 Emergency Renumberings . 339
24.4 Changing the Internet Service Provider . 339

25 Multi-homing . 341
25.1 Multi-homed Networks . 341

25.1.1 Life Without Provider-independent Addresses 341
25.1.2 Redundant Links to a Single Provider 342
25.1.3 Non-redundant Links to Multiple Providers 343
25.1.4 Redundant Internet Connectivity 344

XXIII

Contents

25.2 Multi-homed Hosts . 346

A Crash Course: DNS & BIND . 349
A.1 Domain Name System (DNS) Basics . 349
A.2 The BIND Name Server . 350

A.2.1 Installation . 350
A.2.2 Base Configuration . 351
A.2.3 Forwarder Configuration and Fake Root Zones 352
A.2.4 Starting the Name Server . 352
A.2.5 Adding Forward Zones . 353
A.2.6 Adding Reverse Zones . 354
A.2.7 Secondary Servers . 355
A.2.8 Restarting the Server . 355
A.2.9 Testing and Debugging . 356
A.2.10 Zone Delegations . 356

A.3 Common Pitfalls . 356

B Assigned Numbers and Addresses . 359
B.1 Addresses and Address Prefixes . 359

B.1.1 Unicast Addresses . 359
B.1.2 Multicast Addresses . 360
B.1.3 Multicast Scopes . 360
B.1.4 Anycast and Other Special Interface IDs 360

B.2 Transport Layer Port Numbers . 361
B.2.1 TCP . 361
B.2.2 UDP . 361

B.3 ICMPv6 Types . 362
B.4 Protocol Numbers in Next Header Field . 362
B.5 Ethernet . 363

B.5.1 Ethernet Types . 363
B.5.2 Ethernet Addresses . 363

References . 365

Index . 371

XXIV

Part I

Getting Started

1

A Quick Overview of IPv6

To understand what IPv6 is and what it is not, what features to look out for,
and how it fits into the TCP/IP stack, this chapter provides a rough overview.

1.1 Terminology: IP, IPv4, IPv6 and the Internet

When we talk about “traditional IP” from now on, we use the term IPv4,
which is short for Internet protocol, version 4 as of RFC 791 [32] and related
documents.

Its successor protocol is called IPv6, or Internet protocol, version 6. It is
defined in RFC 2460 [24] and related standards.

Whenever we talk about IP, from now on we talk about the “Internet
Protocol” family in general. This includes all network layer protocols from
the TCP/IP stack, as explained later on in section 1.3: IPv4, IPv6 and any
future successor to both.

On a similar line, when we talk about the Internet, we talk about the
global network connected using IP. The Internet4 is the part of the Internet
that uses IPv4 and the Internet6 is the part that uses IPv6. The Internet4
and Internet6 are not strictly disjoint, but this distinction is very helpful when
we address the issues concerned with the interoperation of both.

Finally there are protocol families or address families that denote an entire
family of protocols using the same addressing scheme. The INET address
family includes IPv4 as well as all protocols running on top of IPv4, like TCP
or UDP over IPv4. Similarly, the INET6 protocol family includes IPv6 and
all other protocols using IPv6 addresses or running on top of IPv6.

1.2 The “IPv6 Sales Pitch”

What are the differences that make IPv6 superior to IPv4? The most visible
differences fall into two categories: Changes that solve fundamental inade-

4 1 A Quick Overview of IPv6

quacies of traditional IPv4 and new features that were first introduced with
IPv6.

The features resolving fundamental problems with IPv4 that made a re-
design necessary include these:

Larger address space Probably the most essential advantage of IPv6 over
IPv4 is its enlarged address space. While IPv4 addresses are 32 bits long,
IPv6 uses 128 bit addresses. These long addresses resolve the address
scarcity issues getting more severe every day.

Abolition of NAT With IPv6 there is no need to connect multiple ma-
chines to the Internet using a single address and network address transla-
tion (NAT). Without NAT, end-to-end connectivity becomes available
again, allowing machines to connect to each other without intermedi-
ate “broker” services, like mail exchangers/relays, web proxies, DNS for-
warders or SIP gatekeepers, that are run by a service provider.
At first glance this doesn’t seem like much of an advantage, but at this
time its consequences are barely fathomable, making services possible that
are difficult even to imagine to our NAT-conditioned minds.

Simplified address structure With the large address space there is no
more need for configurable network masks, thus simplifying network con-
figuration and disposing of an ever annoying source of misconfiguration.

Simplified address configuration The large address space allows for a
simplified address configuration mechanism, providing a service similar to
the dynamic host configuration protocol (DHCP) but avoiding the need
to maintain state information about address leases.
Replacing DHCP with a minimum-configuration, stateless mechanism
simplifies network configuration even more and eliminates another com-
mon cause of network problems.

Simplified address renumbering With the address configuration mech-
anism it is perfectly feasible to change addresses throughout an entire
network during normal operations without touching or even rebooting
any machine connected.
IPv4 network renumberings put a network temporarily down and require
a serious effort, thus making network reorganizations expensive and risky.
This problem ties many customers to their Internet service providers
(ISPs). With IPv6 it is feasible to reorganize networks or switch ISPs
without disruption of network services.

Improved multicast The multicast address range has been vastly ex-
tended, making use of a wide range of “scopes” that define the domain
within which an address is used. Multicasts as well as multicast routing
are base features of IPv6.
Routed multicasts are a functionality necessary to build “self-configuring”
network services and more efficient “intelligent broadcast” services like
“Internet Radio”, among other things.

1.2 The “IPv6 Sales Pitch” 5

Abolition of broadcast With the extended multicast functionality IPv6
doesn’t have any further need for IPv4-style broadcasts.
This makes IPv6 invulnerable to attacks that use remote broadcasts such
as “ping bounce” or “smurf” denial of service attacks, while it still sup-
ports all the “reasonable” features that IPv4 broadcasts are used for. As
another advantage over broadcasts, multicasts are only processed on those
nodes which have actively signalled that they are interested in the partic-
ular multicast group. This reduces the load on all other machines.

Streamlined routing tables With IPv4, address ranges were assigned in
an ad-hoc style and for unlimited time. Medium to large organizations ob-
tained provider-independent addresses (PI addresses) and then connected
through one or several ISPs, leading to an excessive growth of routing ta-
ble entries in the “backbone” routers at the top network service providers.
With IPv4 addresses becoming ever more precious and renumberings be-
ing virtually infeasible these organizations refuse to release these addresses
they hold.
IPv6 doesn’t provide PI addresses, it makes renumberings easy and far
less risky, it only assigns addresses on a non-permanent basis and provides
such an abundance of addresses that hoarding them doesn’t make sense.
As a consequence, routing tables in the core routers are several orders of
growth shorter with IPv6 than with IPv4; and even when the Internet6
grows, the routing tables will mostly stay at at their current size.

All these features are deeply incorporated into the IPv6 design, making them
readily available.

In addition, some more advanced features were standardized that don’t
solve a problem with existing IPv4 but implement new functionalities:

Network traffic security with IPsec The standards expect a full imple-
mentation of IPv6 to include network layer encryption and authentication
using IPsec as a mandatory feature. Among other advantages of fully in-
tegrated network traffic encryption this provides the means to encrypt
traffic even within a local network, thus providing protection from insid-
ers trying to sniff network traffic.
IPsec has been backported to IPv4 as an optional feature with little or
no loss of functionality. More or less usable implementations are available
though the key exchange protocols still show interoperation problems.
While Microsoft Windows XP (SP2) currently limits itself to the “NULL”
encryption algorithm, other implementations do provide strong end-to-end
encryption.

Mobile IPv6 The IPv6 standards include a feature called “Mobile IPv6”.
This allows “roaming” while maintaining a “home” network address at
all times, keeping all existing network connections open even while the
underlying network connectivity changes. While Mobile IPv6 has a num-
ber of mind-boggling security implications, “roaming” provides the base
technology for a wide range of mobile applications.

6 1 A Quick Overview of IPv6

The standards for mobile IPv6 have been released fairly late. Implemen-
tations are based on preliminary drafts of the standards and should be
considered experimental.
IPv4 offers a similar optional feature; it has been added to IPv4 only
lately though, severely restricting its functionality compared to IPv6.

Quality of service (QoS) support Several standards addressing quality
of service have been released that specify how near-realtime functionality
can be incorporated into IPv6. While quality of service is still an emerging
technology, near-realtime applications like IP telephony may well make
good use of this feature.
Implementations are not yet readily available; with the political issues
involved it remains questionable if end-to-end quality of service support
will ever become generally available.
The near-realtime features defined for IPv6 haven’t been backported to
IPv4 and it is unlikely they will ever be.

IPsec may be considered the most mature of these features, but even IPsec
isn’t fully usable in a production environment. Certificate-based authentica-
tion and multicast support are still missing from implementations.

Even though mobile IPv6 and quality of service are very exciting—and
scary in the case of mobile IPv6—they are neither essential to the setup and
operation of IPv6 nor are they stable enough to be used in a production
environment yet.

1.3 IPv6 and the TCP/IP Stack

What exactly is IPv6? You may have a reasonable idea of what the “stan-
dard” TCP/IP stack looks like. Maybe you’ve read the standard “TCP/IP
Illustrated” by the late W. Richard Stevens [103], or any other of the wide

Application
Layer

Transport
Layer

Network
Layer

Link
Layer

DNS SSH SMTP IMAP HTTP · · ·

TCP UDP · · ·

IP(v4)

IGMP ICMP

IPv6

MLD ICMPv6

Ethernet PPP
Token
Ring

· · ·

Fig. 1.1. IPv6 and its role in the traditional TCP/IP stack

1.3 IPv6 and the TCP/IP Stack 7

range of introductory books on TCP/IP. So except for the highlighted IPv6
part, figure 1.1 may look reasonably familiar to you. If you have never seen it,
this is how it works: The network stack is organized in four different layers,
communicating only with the layers immediately above and below them (ex-
cept in one case we’ll see below). Every layer provides a specific functionality
to the layers above:

Link Layer The link layer transmits data packets, called frames, between
devices directly connected to the same physical network. The archetypical
link layer is Ethernet in one of its many physical implementations.

Network Layer Devices connected to different physical networks can com-
municate through the network layer. An IP packet is sent from one device
to another by being wrapped up in a link-layer frame and then being sent
either to the recipient if it is connected to the same physical network,
or to an intermediate device called a “router”. A router that receives a
frame first unpacks the IP packet within. If the packet is not addressed to
the router itself it decides where to forward the packet to—either another
router or the destination device. It re-wraps the packet in another link-
layer frame and sends it out the the next link-layer destination. Eventually
the packet arrives at its destination.

Transport Layer While the network layer only addresses devices, like com-
puters, the transport layer adds port numbers to its communication to help
the destination device pass the communication to a particular process.
There are two major transport layer protocols: The transmission control
protocol (TCP) implements a virtual connection, taking care of the re-
transmission of lost or damaged network layer packets and the ordering
of packets. The User Datagram Protocol (UDP) simply sends individual
packets, called datagrams to a destination process but doesn’t provide for
a connection or the handling of lost packets.

Application Layer Applications use the transport layer to implement com-
munication between processes on different computers to provide a specific
functionality. Applications access the network layer directly when they
deal with IP addresses, usually when they try to address their commu-
nication peers; this is the one exception to the rule that any layer only
communicates with the layers immediately above or below.
A somewhat unusual application layer protocol is the domain name sys-
tem (DNS). It provides a translation service turning a host name like
www.example.com into an IP address and vice versa. Virtually all appli-
cation programs use this service, so from an application developer’s point
of view the DNS conceptually belongs to the transport or network layer
even though the protocol definition puts it in the application layer.

So how does IPv6 fit in? The figure already explains two essential prop-
erties of IPv6.

First of all, IPv6 is a network layer protocol; it doesn’t interfere with
the transport layer. You may sometimes read about “TCPv6”, which doesn’t

8 1 A Quick Overview of IPv6

really exist; usually this means “TCP over IPv6”. More important, since most
application software uses the transport layer interface most of the time, it is
usually fairly straightforward to make IPv4 applications support IPv6. The
majority of work involved deals with the (usually minor) tweaks necessary
to support the larger addresses whenever the application needs to deal with
addresses directly.

Next, IPv6 runs in parallel with IPv4 even to the point that they “share”
a single interface. Legacy systems that need IPv4 continue to work even when
IPv6 is enabled; they just require the extra administration effort to maintain
them. There won’t be a “great switchover” on a fixed “flag day” that needs
to be organized all over the world. Instead, the core strategy to deploy IPv6
in any existing environment is a soft migration, introducing IPv6 in small,
easily reversible steps.

2

Preparing for IPv6

Using IPv6 in a Unix network requires a number of straightforward but im-
portant preparations.

This chapter presents some suggestions about obtaining globally routed
IPv6 addresses, setting up a test environment and a few security precautions.
Following that, it explains how to enable and test IPv6 support within the
kernel.

2.1 Obtaining Our Own IPv6 Address Prefix

IPv6 addresses are virtually unlimited and we can and should obtain our own
/48 address prefix from our friendly IPv6-enabled ISP.

So the one important step is to contact our ISP and request an IPv6 prefix.
But if they turn out to be of the distinctly IPv6-unfriendly kind we still have
several options:

1. Find an IPv6-friendly ISP. Especially small ISPs tend to be fairly coopera-
tive to such a request. In the long run this is the one reasonable approach,
even though the short-term trouble of switching ISPs may be prohibitive.

2. Find a tunnel provider to connect to. Hexago1 in Canada and SixXS2

in the Netherlands are the most widely known; both offer free tunnels
to end users at an international scale. Other tunnel providers start to
become available, so if we can’t get native IPv6 connectivity we are best
advised to look for a tunnel provider in our vicinity. While latency doesn’t

1 http://www.hexago.com/. At the time of this writing they provide quick and
easy access with a minimum of hassle, letting anybody set up a tunnel in less
than fifteen minutes.

2 http://www.sixxs.net/. They expect their users to maintain their tunnel up
and running 24/7 and won’t route any traffic until it has been for an entire week,
but in Europe the latency is much better than through Hexago.

10 2 Preparing for IPv6

exactly improve from using tunnel providers, this is a fairly easy and quick
approach to establish basic Internet6 connectivity.

3. If we have a statically assigned globally routed IPv4 address, we can use it
to generate our own “6to4 prefix”. While 6to4 is not without its problems,
it does provide us with a means to connect to the Internet6 even without
support from our ISP or a tunnel provider.

4. Use private addresses that won’t be routed through the Internet. How
they are allocated and used will be explained later on. This is fine if
we don’t want to connect to the Internet6—and it provides much the
same treacherous feeling of security that NAT does. In the long run
however, this approach isn’t much use since it doesn’t let us connect to
the Internet6.

5. Just use the address prefix reserved for documentation purposes. This is
quite generally not a good idea but it turns especially troublesome if we
later on try to connect to the Internet6. But as long as we don’t try to
connect to the Internet6, using it is a reasonable last resort.

Again, we should do ourselves and the entire IPv6 community a favour and
first ask our ISP about IPv6 connectivity. Not only will it make it more
difficult for them to claim that we “are the very first customer ever to ask for
it”—having obtained our own prefix will make it much easier to get IPv6 up
and running than any other approach.

2.2 Setting Up Our Test Environment

While we wait for our ISP to assign us an IPv6 prefix, this is the time to set
up our environment.

Nobody ever learned how to ride a bicycle just from reading a book about
it; very likely you won’t learn how to set up and run IPv6 from just reading
this book, either. You will need to give it a proper try, and doing so requires
a network environment, no matter how small.

2.2.1 Choosing the Hardware

IPv6 doesn’t need more resources than IPv4; a few old 486 PCs will do fine.
More important is the number of machines and network interfaces. While
most examples in this book try to minimize the number of machines needed,
dynamic routing simply doesn’t make sense with two machines and a single
network interface in each.

In addition to the computers themselves we also need some network equip-
ment. Again, this doesn’t need to be anything particularly fancy; if all we
have is some old Thicknet equipment, that’s what we use. There is however
one requirement for the networking equipment: We must keep it easily re-
configurable. Having to find the network administrator to re-configure the

2.2 Setting Up Our Test Environment 11

VLANs of a big-iron switch or an operator with a key to the networking rack
will quickly become exceedingly time-consuming.

My personal favourite however is a virtual test environment; in my case I
use VMware, though Xen may soon become an even better alternative. Using
these has a number of advantages, from being able to keep the test environ-
ment disconnected from anything else to very quick network reconfigurations
to a virtually unlimited number of virtual machines that can easily be cloned
and taken snapshots of. So if you have a machine with a reasonable amount
of RAM (from 1 GB up) this may be the way to go for you, too.

2.2.2 Supplementing the System Installation

All example setups in this book use a fairly minimal installation; if addi-
tional packages are necessary to make such an installation work, they will be
explicitly mentioned where they are needed.

To simplify life it is useful to prepare a few things right from the start,
even if they are not strictly essential.

Choosing the Kernel Especially with Linux it is useful to select a recent
kernel version since IPv6 support is still evolving.

Debian Sarge If at all possible we use a 2.6 series kernel here. All
examples in this book refer to it. 3

Almost-essential packages With some Unixen we should install a few ex-
tra packages right from the start.
While the bash shell isn’t strictly necessary I personally consider it de
facto essential on any system except for very limited appliance-style in-
stallations. If you prefer the Korn, C, Z or whichever shell, install that
instead.
We will definitely need tools like ping, traceroute, netstat and route

or their IPv6 counterparts on all systems.

Debian Sarge The packages iputils-tracepath and iproute are
necessary to use traceroute6 and the ip utility, respectively.

FreeBSD 6.1 The bash package is located on the second CD-ROM
(“Disc 2”).

Solaris 10 Assuming a “Reduced Networking Core System” we need to
install the packages SUNWgssc, SUNWgss and SUNWbip from the installation
media for such essential tools as ping. The bash shell is located in the
SUNWbash package. 4

Man pages and Whatis index If we don’t have another machine with
these installed, we should make sure we have them on our test system,
including an up-to-date Whatis index.

Debian Sarge The man pages as well as the Whatis index are auto-
matically installed even with a minimal installation. Additionally, in-
stalling debian-reference-en is a good idea.

12 2 Preparing for IPv6

FreeBSD 6.1 To install the man pages and Whatis index (if we have
done a “Minimal” installation) we mount the CD-ROM labelled “Disc 1”,
change to the 6.1-RELEASE/manpages directory on the CD-ROM and run
the ./install.sh script.

Solaris 10 We need to install the packages SUNWlibC, SUNWdoc and
SUNWman to install the man pages. A subsequent invocation of “catman
-w” updates the Whatis index. 5

Extended logging It is often helpful to direct all syslog messages to a
single file. During system setup and debugging I habitually use an entry
like

/etc/syslog.conf

*.debug /var/log/debug

in /etc/syslog.conf on all systems. If you do so too, make sure to create
the file with permissions 0600 before restarting the syslogd.
Once the system turns productive, don’t forget to undo this configuration
again, otherwise it will unnecessarily swamp the /var file system.

Packet sniffers Sooner or later we need to use a packet sniffer in our en-
vironment, either to find a problem or to explore in more detail how IPv6
works.
If we don’t have X11 installed we are effectively stuck with tcpdump,
snoop (on Solaris) or possibly tethereal. I personally prefer ethereal,
or wireshark as has been recently renamed. All the traces in this book
are done with it, but it requires X11 so it isn’t generally available.

2.2.3 Backup and Disaster Recovery

If we have to use an IPv4 production system for our experiments, this is an
excellent moment to do a full backup and make sure we can actually do a
successful disaster recovery.

If we use a dedicated test environment it is also an excellent moment to
do a full backup so we can revert our steps if anything goes wrong.

If we use VMware, or Xen, or another sort of virtualized environment, this
is the time to explore its snapshot features.

In general we should run a backup or snapshot whenever we reach some
usable state. Things will go wrong, and chances are we won’t be able to do a
reliable roll-back by hand.

2.3 Security Precautions

Before we first enable IPv6 on a machine we should make sure we don’t open
any unexpected security holes to our environment. Aside from any security
measures specific to the environment we should consider the following list.

2.4 Kernel IPv6 Support 13

� If at all possible use a test environment disconnected from production
networks and the Internet.

� You need an IPv6-free test environment. Check with the local network
administrators if you are not personally in charge.

If IPv6 is already in use in your environment, don’t
try to set it up there. Playing around with the IPv6
equivalents of DHCP and dynamic routing in a pro-
duction environment will cause you as well as your network
administrators serious pain.

� If the system is connected to the Internet, disconnect it if possible.
If you have to use 6to4 addresses for the IPv6 setup, it is essential
to disconnect until the environment is up and running; otherwise it
is possible that you are attacked using 6to4 tunnels across your IPv4
infrastructure.

� If you can’t disconnect from the Internet and are willing to take the
extra risk, make sure your firewall (there is one, right?) does not pass
IPv6. Check its interface configuration for addresses in hexadecimal
and for lines containing the string “inet6”.

� If you can’t block IPv6 on your firewall you must set up your own,
disconnected test-only environment.

At the time of this writing (early 2006) IPv6 is slowly gaining a reputation
for being neglected as a possible security hole in “IPv4-only” networks. Many
systems and applications already support IPv6, so once an attacker has got
into a network, IPv6 may be used locally to circumvent the existing IPv4
security restrictions.

Enabling IPv6 in an environment doesn’t exactly minimize this problem,
so please, don’t take any unnecessary chances. Even though you may later on
realize that some of these precautions are a bit overly restrictive, chances are
that you will miss some advanced feature, like one of the tunnel mechanisms,
opening a security hole to the environment.

2.4 Kernel IPv6 Support

Finally it is time to enable IPv6 on the test machines and take a quick peek
at the relevant kernel configurables.

2.4.1 Enabling IPv6 Within the Kernel

The canonical way to check for IPv6 support is the ifconfig -a command.
At least for the loopback interface it should show an address line with the
address family “inet6” and the funny looking address “::1”.

With FreeBSD 6.1 this already works. With Debian Sarge and Solaris 10
this doesn’t suffice for two different reasons: With Debian Sarge we need to

14 2 Preparing for IPv6

load an additional kernel module while Solaris 10 only “plumbs” interfaces if
they are configured. Knowing this it is reasonably straightforward to enable
IPv6 temporarily.

Debian Sarge A simple

modprobe ipv6

does the trick, unless you have built a custom kernel without IPv6 support.

FreeBSD 6.1 The standard kernel already supports IPv6 and the loopback
interface should be up and running without further action. To enable IPv6
on a physical interface lnc0 we need to invoke

ifconfig lnc0 inet6 up

after a reboot.

Solaris 10 The command

ifconfig lo0 inet6 plumb up

plumbs and enables IPv6 on the loopback interface. 6

Afterwards the ifconfig -a output should show an IPv6 address ::1 for
the loopback interface until the next reboot.

Enabling IPv6 permanently is just as straightforward.

Debian Sarge We just add a line

/etc/modules

ipv6

in /etc/modules and reboot.

FreeBSD 6.1 Adding a line

/etc/rc.conf

ipv6_enable="YES"

to /etc/rc.conf permanently enables IPv6 on all interfaces after a reboot or
an explicit /etc.rc.d/network_ipv6 start.

Solaris 10 For an interface pcn0, creating a file /etc/hostname6.pcn0 en-
ables IPv6 on that interface. As soon as IPv6 is enabled on any interface this
way, the startup scripts also enable IPv6 on the loopback interface. For now
we create an empty file for at least one physical interface and reboot. 7

Checking if IPv6 support is permanently enabled is easiest done like this:

� Reboot the system.
� Check if ifconfig -a lists an inet6 address of ::1 for the loopback

interface.

2.4 Kernel IPv6 Support 15

� Ping that address; either use the ping command (Solaris 10) or the
IPv6-specific ping6 command (Linux, BSD).

If you have built your own custom kernel without IPv6 support you will
need to do so again with IPv6 enabled.

Linux Depending on the kernel version, enable the kernel options “Code ma-
turity level options” → “Prompt for development and/or incomplete code/dri-
vers” and “Device Drivers” → “Networking support” → “Networking options”
→ “The IPv6 protocol” while doing a make menuconfig or similar. Alterna-
tively, set the CONFIG_IPV6 parameter in your .config file with an editor.
Afterwards rebuild and reinstall your kernel.

FreeBSD 6.1 Re-add the line

/sys/i386/conf/CUSTOM

options INET6

in the kernel configuration file, reconfigure, rebuild and reinstall your kernel.
8

At this point IPv6 should be successfully enabled in the kernel.

2.4.2 IPv6-related Kernel Variables

Linux, the BSDs and Solaris offer access to a number of interesting IPv6-
related kernel variables.

Debian Sarge The command

sysctl -a | egrep ^net.ipv6

lists all IPv6-related kernel variables.

FreeBSD 6.1 Similar to Debian,

sysctl net.inet6

does the job.

Solaris 10 Finding the relevant kernel variables is a bit more tedious here.

ndd /dev/〈device〉 \?

queries all variables defined for the given 〈device〉, which is any of ip6, icmp6,
rawip6, tcp6 and udp6. Knowing the variable name and the device, a second
invocation

ndd /dev/〈device〉 〈variable〉

yields the value of that variable. While this is more tedious to use than the
sysctl based queries of Linux and the BSDs, it offers far more information.

9

16 2 Preparing for IPv6

It may be tedious to sift through these variables for hints of a misconfigu-
ration but doing so can be extremely helpful if the system doesn’t behave as
expected.

2.5 Packet Filter Considerations

Throughout the book there are a number of sections entitled “Packet Filter
Considerations”. They are generally irrelevant unless we actually set up a
packet filter for IPv6. In that case you should read the entire chapter includ-
ing the packet filter section before you apply it to your system. Otherwise,
especially when you read the chapter for the first time, you can safely skip
the packet filter sections.

2.5.1 Available Implementations

Packet filter support for IPv6 is generally disappointing: In some cases it
simply isn’t available at all, in other cases it doesn’t support stateful filtering
(also called connection tracking) or some other fundamental filtering criteria.
Nevertheless, packet filtering is essential for secure IPv6 operation, especially
since we can’t use a NAT gateway as a “block everything initiated from out-
side” catch-all solution.

Packet filters differ in several ways: Some implement IPv4 and IPv6 filter-
ing entirely independent of each other while others use a unified filter frame-
work.

Some have a first match semantic where the first matching rule determines
if a packet is passed or not while others use a last match semantic where the
last matching line applies, usually with a quick option that provides a first
match semantic on individual rules.

Some filters classify packets as incoming or outgoing while others distin-
guish between packets originating locally, being forwarded and being delivered
locally.

While traditional packet filters use a single, linear filtering table with a
feature to skip table entries, todays filters usually apply a different syntax with
multiple strands of execution. These are called chains or anchors, depending
on the filtering framework.

Debian Sarge Linux uses a dedicated IPv6 filtering mechanism called
ip6tables. It behaves much like IPv4-only iptables, so it uses a first match
semantic with a separate “forward” classification and arbitrary filter chains.
At the time of this writing (February 2006) ip6tables doesn’t support con-
nection tracking yet but can handle some option headers.

FreeBSD 6.1 Currently there are two IPv6-capable packet filters available:
The more traditional IPv6-only ip6fw and the new pf recently imported from

2.5 Packet Filter Considerations 17

the OpenBSD project. Since ip6fw doesn’t support connection tracking we
will only consider pf. It uses a last match semantic with a “quick” option,
handles both IPv4 and IPv6 and supports connection tracking. It doesn’t
handle option headers except on an all-or-nothing basis. Considering some
regressions from FreeBSD 6.0 to FreeBSD 6.1, IPv6 support in pf still seems
somewhat immature.

Solaris 10 There is no IPv6-capable packet filter available. 10

2.5.2 Basic Configuration

The configuration examples in this book put their emphasis on clarity, not
performance. If we needed high performance we would use chains or anchors
to minimize the number of rules that must be evaluated for any packet. We
would also reorder the rules in such a way that those with the largest number
of matches are put towards the beginning of each chain. We would use fea-
tures like pf’s “tables” to speed up lookups of various kinds. We would tune
a number of kernel parameters that control the expiration rate of state infor-
mation, memory allocation within the kernel and similar performance-related
attributes.

But this is not a book about advanced packet filtering tricks (which doesn’t
make sense with todays IPv6 packet filters anyway); neither is it an introduc-
tion to packet filtering basics. But if you are reasonably comfortable with
configuring packet filters for IPv4, then you should find all the information
you need to set up an IPv6 filter as well.

Debian Sarge The boot scripts don’t provide any support to set up IPv6
packet filter rules. Instead, we need to add some pre-up and up statements
in /etc/network/interfaces.

The most simple approach we can possibly come up with is a script that
is run before we finally bring up an interface. To start it, we add a line

/etc/network/interfaces

pre-up /etc/ip6tables.sh

to every interface configuration in /etc/network/interfaces. The script we
run might look like this for now:

/etc/ip6tables.sh

#! /bin/bash

/sbin/ip6tables -P INPUT DROP ‖ Clean the slate and DROP by default
/sbin/ip6tables -P FORWARD DROP

/sbin/ip6tables -P OUTPUT DROP

/sbin/ip6tables --flush

/sbin/ip6tables -X

/sbin/ip6tables -P OUTPUT ACCEPT

18 2 Preparing for IPv6

To install the rules temporarily, we just run the script. A subsequent

ip6tables --list --verbose --numeric

will show that we have successfully set up the filter.
Note that the filter rules shown here will silently drop filtered packets.

Despite the fact that the ip6tables man page already mentions a REJECT

target this is still being developed and doesn’t work at least with Debian and
the kernel version it ships with. As we’ll see later in section 4.7.4, silently
dropping packets in conjunction with IPv6 is a particularly bad habit.

Additionally, we need to accept output packets by default; for some reason
the multicast listener reports will otherwise be filtered even if we let ICMPv6
traffic pass.

FreeBSD 6.1 To enable the pf filter at boot time we first add a line

/etc/rc.conf

pf_enable=YES

to /etc/rc.conf. Then we add the filter configuration to /etc/pf.conf.
Following the layout required for a pf.conf file, an initial configuration that
doesn’t allow any traffic at all may look like this:

/etc/pf.conf

ifs="(lnc0)" ‖ macros and tables
[. . .]
scrub in all ‖ traffic normalization
[. . .]
antispoof quick {(lo0) $ifs} ‖ anti-spoofing rules
[. . .]
block return all ‖ final catch-all rule

This layout follows the ordering required by pfctl. It uses the quick modifier
to use a first match semantic.

At this point it doesn’t allow any traffic at all, but if we add rules before
the final block statement, we can enable traffic as we need.

Notice that the interfaces in the interfaces variable are written in paren-
theses. Generally, pf accepts interface names instead of addresses in the filter
rules. It substitutes every interface name with a list of the addresses that the
interface is configured with. Without parentheses the pfctl command does
the substitution when it loads the filter rules. If the interface configuration
changes later on, then we need to re-run pfctl to update the rules. With
parentheses, the packet filter checks the actual interface configuration every
time that a packet is run through the filter rule. If an interface configuration
changes, then the packet filter will adapt its behaviour accordingly even if we
don’t re-run pfctl; we’ll see later on why this is necessary.

2.5 Packet Filter Considerations 19

Unfortunately, the parentheses notation is apparently bro-
ken with FreeBSD 6.1. Regression tests with FreeBSD 6.0
show that at least together with from it doesn’t seem to
work reliably. This leaves us with two choices: Downgrade to 6.0,
which works, or omit the parentheses and ensure that we reload the
filter rules whenever the interface configuration changes. Through-
out the book, we assume that the parentheses work; if necessary,
use FreeBSD 6.0 for nodes that need a packet filter.

To enable the filter rules temporarily, we need to run the commands

kldload pf

pfctl -f /etc/pf.conf

pfctl -e

to load the packet filter kernel module, to load the filter rules and to enable
the filter. If we run

pfctl -s rules

it displays the currently installed rules. 11

At this point another weakness of todays IPv6 packet filters emerges: Set-
ting up a filter correctly during boot time is non-trivial. An obvious solution
would block all traffic on all network interfaces until they are up and run-
ning and only then install the final filter rules. But as we’ll see in the next
chapter, when an interface is first brought up it does a duplicate address de-
tection, so we should really set up a temporary filter configuration that allows
just that, then bring up the interface and afterwards install the “final” rules.
Unfortunately, todays boot scripts don’t do that.

Doing so ourselves will either interfere with the boot scripts or make the
packet filter configuration noticeably more complex. If you really worry about
this sort of race condition you will find all the information necessary to modify
your system accordingly in the following chapters, but otherwise we leave it
at this level of imperfection and rather make sure that our filter setup will
still be usable with the next system update.

3

IPv6 Address Basics

To set up IPv6 we must understand a few things about IPv6 addresses. This
chapter explains the basic IPv6 address architecture.

3.1 Size Matters

IPv6 addresses are 128 bits or 16 bytes1 long, or four times as long as an IPv4
address. That doesn’t sound too exciting in itself, but figure 3.1 gives a first
clue that the difference may be vast. To get an even better understanding of
the differences between the IPv4 and IPv6 address spaces, it helps to take a
look at the numbers involved.

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

IPv6 address (128 bits)

IPv4 address

Fig. 3.1. IPv6 addresses compared to IPv4 addresses

As a first step it is obvious to compare the number of IPv4 and IPv6
addresses. There are

232 = 4294 967 296 ≈ 4.3 × 109

1 Historically, units of eight bits are called octets while the smallest addressable
unit in a computer is called a byte. In the days of the PDP-10, which had nine
bits per byte, this distinction was important; today both terms are normally used
interchangeably.

22 3 IPv6 Address Basics

IPv4 addresses compared to

2128 = 340 282 366 920 938 463 463 374 607 431 768 211 ≈ 3.4 × 1038

IPv6 addresses. So every single IPv4 address is outnumbered by

296 = 79 228 162 514 264 337 593 543 950 336 ≈ 7.9 × 1028

IPv6 addresses. A more useful comparison puts the number of “sites” that can
be connected to the Internet into relation. Assuming a simplified addressing
scheme where all sites on the Internet4 are assigned a single “class C”-sized
network, i.e. a network with a /24 prefix, there are

224 = 16 777 216 ≈ 1.7 × 107

sites that can be connected through the Internet4 (ignoring both sites with
other prefix sizes and the fact that not all IPv4 addresses can be used like
this). With IPv6, all sites except extremely large ones get assigned a /48

prefix, so IPv6 can address

248 = 281 474 976 710 656 ≈ 2.8 × 1014

sites on the Internet6. This leads to the least impressive but most significant
number in this arithmetic exercise: For every IPv4 site there are

224 = 16 777 216 ≈ 1.7 × 107 (= 16M)

IPv6 sites addressable. That’s like an old-fashioned 1.44 MB floppy disk
compared to a data center class 23 TB disk array (which would need to be
equipped with a minimum 75 standard 300 GB hard disks).

These numbers are based on a few oversimplifications, but they provide a
rough idea how IPv6 resolves the problems and limitations that IPv4 and its
insufficient address size impose on the Internet4.

3.2 Address Notation

Different from IPv4 addresses, IPv6 addresses are written in hexadecimal,
with pairs of bytes separated by colons. Those pairs of bytes are often called
“blocks”, even though this term is both unofficial and slightly misleading as
“address blocks” are also ranges of addresses. The hexadecimal digits, or
half-bytes, are called nibbles.

One of my interfaces uses the address

fe80:0000:0000:0000:020c:f1ff:fefd:d2be

3.2 Address Notation 23

which looks a bit unwieldy. To abbreviate it, within each block leading zeros
may be omitted, resulting in the slightly shorter form

fe80:0:0:0:20c:f1ff:fefd:d2be

Finally, in every address at most one sequence of zero-blocks may be written
as two consecutive colons, further collapsing the address to the compressed
form

fe80::20c:f1ff:fefd:d2be

which is about as short as we can reasonably expect. Note that a double colon
can be used within an address at most once—otherwise the notation would
be ambiguous.

In section 2.4.1 we have already seen the address ::1 assigned to the
loopback interface. What seemed distinctly odd at that time now expands to
the address

::1 = 0000:0000:0000:0000:0000:0000:0000:0001

finally making sense after all.

Network prefixes are written as with IPv4, using a trailing slash followed
by the number of relevant bits in decimal. More precisely, a prefix is written
as a full IPv6 address followed by a slash and the number of relevant bits in
decimal. This distinction is important in conjunction with the :: notation;
fe80::f00/64 is equivalent to fe80::/64, not fe80:0:0:f00::/64:

fe80::f00 = fe80:0000:0000:0000:0000:0000:0000:0f00

fe80::f00/64 = fe80:0000:0000:0000:****:****:****:****

= fe80::/64

Sometimes an IPv4 address is embedded in the last four bytes of an IPv6
address. These addresses can be written in a mixed (address) notation as an
IPv6 address with the last two blocks replaced by the IPv4 address, like

::ffff:127.0.0.1 = 0000:0000:0000:0000:0000:ffff:7f00:0001

(which happens to be what an IPv6-enabled program might see instead of a
plain 127.0.0.1 IPv4 address).

IPv6 address notation is defined in RFC 4291 [64], which uses uppercase
letters for the hexadecimal digits; implementations however commonly print
addresses using lowercase letters and accept uppercase as well as lowercase
letters for input.

You may encounter an alternative base 85 encoding as of RFC 1924 [38].
While in theory this notation might actually be useful when transmitting IPv6
addresses over limited-bandwidth connections, this RFC is dated as of April 1,
1996 and shouldn’t be taken too seriously.

24 3 IPv6 Address Basics

Peter Bieringer has written a tool called ipv6calc that converts between
various address representations.

Debian Sarge There is a package on the installation media.

FreeBSD 6.1 A package/port is available but doesn’t contain the man page.

Solaris 10 There are no pre-built binaries available but the sources from
ftp://ftp.deepspace6.net/pub/ds6/sources/ipv6calc/ as of version 0.51
build without major problems. They just need to be installed manually. 12

3.3 Scopes

RFC 1918 [97] originally reserved the IPv4 address ranges 10.0.0.0/8,
172.16.0.0/12 and 192.168.0.0/16 for use within “private networks”, to
be assigned to nodes that don’t need global connectivity, like network print-
ers. These address ranges were subsequently abused to provide limited, “one-
way” Internet connectivity through NAT gateways, causing an abundance of
operational problems along the way.

While IPv6 abolishes the need for NAT, it preserves and extends the orig-
inal ideas of address scopes introduced in RFC 1918.

IPv6 defines a wide range of scopes; most are only used with multicast
addresses. Three scopes are especially important because they are defined for
all address types:

Global scope Addresses that are routed throughout the entire Internet6
are said to have global scope.

Site-local scope Addresses with site-local scope are only routed within a
“site”. While the term “site” has proven to be too fuzzy to be properly
defined, the site-local scope is particularly useful to assign to nodes that
shouldn’t be reachable from outside a restricted network. These addresses
should however not be used to implement another generation of NAT-style
pseudo-connectivity to the Internet.

Link-local scope This scope doesn’t get routed, so it can only be used
within a single subnet, often called a link in RFCs. It is mostly used for
purposes internal to IPv6.

Addresses with a scope larger than link-local can be routed between subnets,
so we call them routable addresses or routed addresses.

The next sections discuss the different address types and the scopes they
support.

3.4 Unicast Addresses 25

3.4 Unicast Addresses

Unicast addresses are “normal” addresses, those assigned to a single network
interface, like 192.0.2.34 with IPv4.

We have already seen a special unicast address in section 2.4.1: The loop-
back address, ::1. It may never be assigned to a physical interface and it
must always be assigned to the loopback interface on any device supporting
IPv6.

IPv4 and IPv6 differ in a most fundamental aspect: While IPv4 always
assigns only one address to an interface, IPv6 assumes that an interface may
have an arbitrary number of addresses assigned.

Most IPv4 implementations have been retrofitted to support multiple ad-
dresses per interface, calling them interface aliases, subinterfaces, or logical
interfaces. These are often treated as separate virtual interfaces, leaving a
single primary address assigned to the physical interface.

IPv6 simply assumes that an arbitrary number of “equal” addresses can be
assigned to a single interface. Later on we’ll see that this occasionally causes
a few minor complications but generally proves very valuable.

Solaris 10 The Solaris ifconfig command still uses the “interface alias”
notion even with IPv6 addresses. While this can be inconvenient at times,
especially when writing portable shell scripts, the implementation complies
with the standards. 13

Just like IPv4, IPv6 addresses consist of a “network part” called subnet
prefix in IPv6 terminology, and a “host part” called interface identifier or
interface ID. Different from IPv4, the subnet prefix length is always 64 bits
for all unicast addresses except those with a ::/3 prefix, so all IPv6 unicast
addresses except for the loopback address look like figure 3.2.

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

Subnet prefix (64 bits)

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

Interface ID (64 bits)

Fig. 3.2. Subnet prefix and interface ID

At this point it is perfectly reasonable to wonder why any single subnet
should contain more than four billion (4 × 109) times as many addresses as
the entire Internet4. We’ll see in section 4.3 that doing so does make sense
after all.

26 3 IPv6 Address Basics

One first advantage of this simplification should already be obvious: Aban-
doning the concept of configurable subnet prefix lengths simplifies network
configuration. Using IPv6, misconfigured netmasks are a thing of the past. In
the next chapter we’ll learn that this simplification has a number of additional,
less obvious advantages.

As mentioned before, IPv6 supports unicast addresses with link-local, site-
local and global scope.

3.4.1 Link-local Unicast Addresses

Link-local addresses are used for a wide range of IPv6-internal purposes. As
soon as an IPv6 interface is enabled, it will automatically acquire a link-local
address starting with a prefix fe80::/642. Invoking ifconfig -a on an IPv6-
enabled machine should show such an address for all physical interfaces.

FreeBSD 6.1 Here even the loopback interface automatically sets up a link-
local address. While this isn’t required, it doesn’t cause any harm, either.

Solaris 10 The implementation of link-local addresses shows a harmless
bug: The prefix length configured here is /10 instead of the /64 as required
by RFC 4291 [64, 2.5.1 (p. 8)]. 14

Using ping6 or, in the case of Solaris, ping it is possible to ping other
machines within the same subnet.

In general it is necessary to specify the interface to use, though. Because
the fe80::/10 prefix is used on all subnets, it is generally impossible for the
kernel to decide which interface to send the ping request to. Depending on
the particular implementation, there are various options to the ping or ping6
command.

Debian Sarge The ping6 command has an option -I 〈interface〉 (upper-
case letter “I”) to specify the interface name.

FreeBSD 6.1 Like Debian, ping6 with FreeBSD supports the -I 〈interface〉
option. Alternatively it is possible to append a percent sign and the interface
name or number to the address, like this:

% ping6 fe80::20c:f1ff:fefd:d2be%lnc0

% ping6 fe80::20c:f1ff:fefd:d2be%1

Solaris 10 Unlike Debian and FreeBSD, the Solaris ping uses an option -i

〈interface〉 (lowercase letter “i”) for this purpose.
Even without an explicit -i option a ping to another machine may actually

work because Solaris caches the link-local addresses it finds on its attached
interfaces. 15

2 The entire fe80::/10 prefix is reserved for link-local addresses, even though in-
terfaces are configured with a prefix length of /64.

3.4 Unicast Addresses 27

Through the rest of the book we will encounter a variety of similar cases
where the command line options differ between Unixen.

The notation shown with FreeBSD is interesting because it hints at some
internals of IPv6. Whenever an interface needs to be added to an IPv6 address,
this is internally done through a scope identifier or scope ID, recently renamed
zone index. Many RFCs use this notation with a percent sign.

� At this point, check that each machine can ping its own link-local
addresses.

� Next, check that they can ping each other using their link-local ad-
dresses.

Explicitly specifying the interface with an address is obviously infeasible
for “normal” applications; they would need to implement some sort of logic
how to augment an address they obtained from the name services (like DNS)
with the proper interface. Fortunately, only link-local addresses need an ex-
plicit scope ID to be usable. Applications virtually always use addresses with
a larger scope, so options to specify the interface are generally used for IPv6-
internal and diagnostic purposes only.

3.4.2 Site-local and Unique-local Unicast Addresses

The next larger scope is called site-local scope. Originally an address range was
allocated for free use within any given site. Eventually the fear of repeating the
same mistakes as with the RFC 1918 private addresses led to the deprecation
of this original prefix. It was meant to be replaced by two new prefixes
called unique-local unicast addresses but until now only one of them has been
formally standardized.

This leaves us with three prefixes for site-scoped unicast addresses.

fec0::/10 This is the original site-local prefix used for site-local scope. Any-
body could use addresses from this pool for local purposes. In Septem-
ber 2004 this prefix was formally deprecated, so it should not be used
anymore.

fc00::/8 From this address pool of unique-local addresses, /48 prefixes will
be assigned by a central authority. At the time of this writing this au-
thority still needs to be established and a proper standard released.

fd00::/8 This pool of unique-local addresses is not centrally managed.
Everyone is free to pick a random /48 prefix for local purposes from
this pool. Using a random prefix will ensure that it is statistically very
unlikely that two sites will coincidentally use the same prefix.
And no, “randomly” picking fd00::/48 for your local site is definitely
not a clever move. . .

At the time of this writing unique-local addresses are mostly undesirable.
They are useful as a fallback during network renumbering events, but since

28 3 IPv6 Address Basics

globally routed addresses are freely available this doesn’t justify bothering too
much about them at this time, so we defer further discussions on site-scoped
unicast addresses until section 16.1.

3.4.3 Global Scope Unicast Addresses

The last scope used with unicast addresses is the global scope. Packets sent
to such an address will be routed through the entire Internet6.

Global addresses are assigned to sites as /48 prefixes3. The assigned prefix
is called the global routing prefix. Within a site every subnet is assigned a
16 bit subnet ID. Together with the routing prefix the subnet ID forms the
subnet prefix. So a globally routed unicast address looks like figure 3.3

0 x
0 x
1 x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

Global Routing Prefix

x x
x x
x x
x x

x x
x x
x x
x x

Subnet ID

Subnet Prefix (64 bits)

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

Interface ID (64 bits)

Fig. 3.3. Globally routed unicast addresses

Originally, only the prefix 2000::/3 has been allocated for unicast ad-
dresses. Within this prefix some address ranges have been allocated for special
purposes.

2001:db8::/32 The APNIC has allocated this prefix for documentation pur-
poses. Throughout this book all example globally routed addresses have
this prefix.

2001:db8:fedc::/48 We assume that our (non-existent) provider has as-
signed us this as our global routing prefix.

2002::/16 These addresses are used for “6to4 tunnels”. They provide a
configuration-free means to run a tunnel to the Internet6 over IPv4-only
networks; they are covered in section 12.2.

3ffe::/16 When IPv6 was still experimental, a global test network called
the 6Bone used addresses from this pool. The 6Bone was disbanded some
time ago but you may still occasionally stumble across these addresses.

If your test environment is connected to the Internet4, make
sure you filter the 2002::/16 prefix at the IPv6 side and
protocol type 41 at the IPv4 side. Otherwise people may be
able to work their way through your firewall using 6to4 tunneling.

3 If your IPv6-incapacitated ISP wants to give you a longer prefix, tell them to
read RFC 3177 [72].

3.5 Multicast Addresses 29

In August 2003, RFC 3587 pointed out that additional address ranges may
be used for unicast addresses in the future. In the long run we may need to
add more unicast prefixes to our configurations, but at the time of this writing
2000::/3 can be considered the only globally routed unicast address range.

With our own /48 global routing prefix we can set up 216 = 64k subnets.
This may seem excessive to the IPv4-conditioned mind, but for any reasonably
sized site this abundance of subnets allows a very fine-grained separation of
network segments, mitigating the damage that a rogue machine or inside
attacker may cause. If you are a network designer, try to keep in mind that
with IPv6 you have a virtually unlimited number of subnets at your disposal.

3.5 Multicast Addresses

From the very beginning multicast support was an integral part of the IPv6
specification. As a consequence, with IPv6, multicasts have finally reached a
level of sophistication such that they even make broadcasts obsolete—so IPv6
doesn’t support them anymore.

1 1
1 1
1 1
1 1

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

F F

Flags: 0=permanent, 1=transient
Scope: 1=interface-local, 2=link-local, . . . , 5=site-local, . . .

Multicast Group ID

Fig. 3.4. Multicast addresses

IPv6 multicast addresses look like figure 3.4. They start with an ff00::/8

prefix. The following flag nibble, which is either 0 or 1 for now, defines if the
address is permanent or transient. A permanent address is officially assigned
for a given purpose by the Internet Assigned Numbers Authority (IANA) or
similar, while transient addresses are assigned locally.

The fourth nibble, called the scope nibble, defines the scope of the address.
Multicasts support far more different scopes than unicasts; available scope
nibble values are

1 interface-local 7 (unnamed) c (unnamed)
2 link-local 8 organization-local d (unnamed)
4 admin-local 9 (unnamed) e global
5 site-local a (unnamed)
6 (unnamed) b (unnamed)

Only the values 0, 3 and f are reserved and should not be used.

30 3 IPv6 Address Basics

The rest of the address contains the multicast group ID. The entire mul-
ticast address identifies a multicast group. Nodes may subscribe to multicast
groups to receive the traffic sent to that group.

Of the permanent multicast groups two are particularly useful: The all
nodes link-local multicast group ff02::1 and the all routers link-local multicast
group ff02::2.

Using these addresses it is possible to ping all nodes (“devices that speak
IPv6”) or routers within a subnet, respectively. Since they are link-local
addresses, we need to specify the interface again as we did with the link-local
unicast addresses.

� Ping the all nodes multicast address (ff02::1) on your subnet. You
should receive replies from all IPv6 nodes connected.

� Now try the all routers multicast address (ff02::2). If you receive a
reply, alert your network administrator; either there is a rogue IPv6
enabled router on the same subnet or you are about to wreak havoc in
an IPv6 enabled network during the experiments following in the next
chapter.
To track down a rogue router continue reading up to section 4.2.1.
There you find out how to figure out the Ethernet address of the router.

Multicasts, and especially multicast routing, are surprisingly complex. In
chapter 18 we investigate them in far more detail.

3.6 Anycast Addresses

Besides unicasts and multicasts, IPv6 also supports so-called anycast packets.
Anycasts are something between a unicast and a multicast packet. They

use addresses from the unicast address space and anycast packets are always
only sent to one interface, like unicasts. But there are multiple interfaces
listening to that address, like multicasts.

Anycasts are still a subject of research. So far, only the subnet router
anycast address is generally supported; it addresses all routers within a sub-
net. Its address is the subnet prefix followed by an all-zero interface id, like
2001:db8:1234:5678:: for the subnet 2001:db8:1234:5678::/64.

� Pinging this address is possible but you should not receive a reply be-
cause you shouldn’t have a router in the network yet; instead, depend-
ing on the implementation, you may receive an “address unreachable”
error or not.
If you do receive a reply, the same reasoning as with pinging the all-
routers link-local address above applies: Either somebody set up a
rogue router or your network is already using IPv6.

3.7 Inside IPv6: The IPv6 Headers 31

RFC 2526 reserves some additional interface IDs for anycasts: The in-
terface IDs dfff:ffff:ffff:ff80–dfff:ffff:ffff:ffff are reserved and
shouldn’t be used unless assigned by IANA.

With IPv4 a similar effect has been achieved by using the same IPv4
address on different DNS root servers located around the world. Using stan-
dard dynamic routing protocols, all requests are automatically directed to the
“closest” DNS server using that address.

3.7 Inside IPv6: The IPv6 Headers

Using the ping command, or ping6 on Unixen that use separate programs
for IPv4 and IPv6, we can now generate some IPv6 packets to observe with
our preferred packet sniffer.

We’ll notice a number of “multicast listener” and “neighbor discovery”
packets. These are irrelevant for us right now; instead we just look for some
“ICMPv6” packets. The Ethernet header doesn’t show any surprises, the
source and destination addresses are just the Ethernet addresses of the net-
work cards in the nodes that ping each other:

Ethernet II, Src: 00:0c:29:2c:b9:14, Dst: 00:0c:29:1a:4f:a1

Type: IPv6 (0x86dd)

Only the Ethernet frame type is slightly interesting: IPv6 packets in Ethernet
frames have a frame type of 34525, or 0x86dd.

The IPv6 header is more interesting, because it looks quite different to an
IPv4 header.

Internet Protocol Version 6

Version: 6

Traffic class: 0x00

Flowlabel: 0x00000

Payload length: 16

Next header: ICMPv6 (0x3a)

Hop limit: 64

Source address: fe80::20c:29ff:fe2c:b914

Destination address: fe80::20c:29ff:fe1a:4fa1

Like an IPv4 header, the IPv6 header starts with a 4 bit version field with
the value 6 rather than 4 for IPv4. So even if the Ethernet frame didn’t tell
us that this was an IPv6 packet, the version field would tell us—for example
if we used a link layer other than Ethernet.

Next follows the 8 bit traffic class field, the IPv6 equivalent of the IPv4
type of service (TOS) field. In section 23.1.2 we see how it is used. Until then
it is always set to 0, or “default traffic class”.

The flow label is a 20 bit field that has no equivalent with IPv4. It is meant
to allow traffic from one node to another to be tagged for bandwidth allocation

32 3 IPv6 Address Basics

purposes. Section 23.1.1 explains how integrated services are expected to use
it, but since implementations currently don’t support it we will always see it
set to 0, which means “not belonging to any particular flow”.

The payload length contains the length of the data payload following the
IPv6 header. It is 2 bytes long and differs from the IPv4 packet length field
because its value doesn’t include the IPv6 header. Otherwise it serves the
same purpose.

The next header field is roughly equivalent to the IPv4 protocol header.
It is a single byte in size and in our example it indicates that an ICMPv6
payload follows the header.

IPv6 calls the IPv4 time to live (TTL) header the hop limit but otherwise
doesn’t change its functionality. In our example, the packet will be forwarded
another 64 hops before an error is returned to the sender.

Finally the source and destination addresses, each 16 bytes long, complete
the header.

Compared to IPv4, a number of header fields are missing. The header
checksum has been abandoned; IPv6 leaves checksum computation to the link
layer for hop-to-hop and the transport layer for end-to-end checksum verifica-
tion. The fragmentation-related identification, flags and fragmentation offset
fields are also gone. If fragmentation occurs, then IPv6 uses a separate op-
tion header. The type of this option header would then be stored in the next
header field and the option header would again have a next header field that
contained the type of data following that header and so on. While IPv4 only
introduced option headers when the original header definition proved insuf-
ficient, IPv6 makes heavy use of option headers. This reduces the overhead
and keeps the design flexible. As an additional consequence, the initial IPv6
header, called the base header, has a fixed length, and we don’t need a header
length field anymore.

After the IPv6 header the ICMP, or rather ICMPv6, payload follows. It
looks exactly like its IPv4 equivalent and doesn’t offer any new insights.

3.8 Address Allocation Policy and the Routing Table
Problem

A huge problem with IPv4 is the number of routes in the default free zone,
also called “Internet backbone” or “Internet core”, which contains all routers
without a default route to an “uplink” provider . At the time of this writing
there are approximately 185000 routes advertised in the default free zone.
Since a “core” router must search its routing table for every single packet it
wants to forward, this large number generates a most fortunate source of in-
come for high performance router hardware vendors—and a most unfortunate
expense for everyone else.

IPv6 deals with this problem using a twofold strategy.

3.8 Address Allocation Policy and the Routing Table Problem 33

The number of routes in the default free zone is to a large degree caused
by awkward address allocations. This makes it difficult to aggregate multiple
routes into a larger one. If for example 192.0.2.0/24 and 192.0.3.0/24 were
topologically “adjacent”, then most core routers could use a single aggregated
route for 192.0.2.0/23.

But IPv4 addresses are allocated permanently and in many “historic”
cases without much forethought on route aggregation; after all, classless inter-
domain routing (CIDR) as the means to aggregate routes was only retrofitted
to IPv4 in 1992/93 in RFCs 1338 [43] and 1519 [44].

Renumbering an IPv4 network is a lot of work and often requires a sub-
stantial downtime, so people will defend their addresses for good reason. In
consequence it is difficult at best to convince users and providers to swap their
current addresses for more sensible ones (from a routing perspective).

IPv6 solves this problem by providing mechanisms to change addresses on
the fly, with a minimum of work and no downtime. In return, addresses are
only assigned on a temporary basis. Section 4.3 explains the fundamental
mechanisms that we can use to do a renumbering, section 16.5 takes a closer
look at the tools we need to manipulate these mechanisms and chapter 24
gives a more strategic overview of a renumbering operation. While the very
idea of a network renumbering event makes experienced IPv4 administrators
get positively upset, with IPv6 it is rather unspectacular.

Another, possibly even bigger cause of the routing table bloat are “multi-
homed sites”, sites that have redundant Internet connectivity through mul-
tiple Internet service providers. They use provider-independent addresses, or
PI addresses for short; these addresses “belong” to the site and they use
the border gateway protocol (BGP) to announce their routes to the entire
Internet—by adding yet another route to the core routing tables.

IPv6 uses a fairly radical solution to this problem: There are no PI ad-
dresses for IPv6. Everyone short of the top tier network service providers will
get their IPv6 addresses from their upstream providers. We will see shortly
that the effect of this limitation isn’t half as bad as it seems, but if we need
to set up redundant network connectivity we need radically new strategies.
Section 25.1 shows how to deal with the situation using a tunnel setup.

Both of these approaches are somewhat radical and invariably provoke a
severe knee-jerk reflex on experienced IPv4 administrators. But if we assume
for now that these things actually work (and they do), then the capability to
renumber a network on the fly is an invaluable tool when we need to redesign
our network topology—or switch to another ISP if we don’t use PI addresses
anyway. Using tunnels instead of running our own autonomous system (AS)
and BGP routing makes our life not only different but actually easier rather
than more difficult. Additionally, the tunnel architecture converges much
faster when one of our uplinks fails.

34 3 IPv6 Address Basics

3.9 References

This entire chapter only provides a first introduction to the issues around IPv6
addresses. For a more detailed introduction I consider the second edition of
Silvia Hagen’s book [54] quite useful; if you understand German, she has also
written a similar book [53] in German.

Beyond books the ultimate resource are the official standards, the Internet
RFCs (for request for comments), available from the web page of the Internet
Engineering Task Force (IETF) at http://www.ietf.org/.

If you have never read an RFC because you think they are boring (some-
times they are), start with these ones:

RFC 2119 [12] Terms like “must”, “should” and “recommended” are fre-
quently used in all RFCs. Their precise meaning is defined in this short
but essential RFC.

RFC 1924 [38] This RFC introduces the base 85 address encoding scheme.
Technically it isn’t relevant, but it shows that even RFCs can be great
fun to read.

Essential to the entire address architecture are these:

RFC 4291 [64] The core address architecture specification.
RFC 3587 [65] The global unicast address format.
RFC 3879 [71] The old site-local unicast addresses are deprecated here.
RFC 4193 [66] The new unique-local addresses.
RFC 3177 [72] Address allocation recommendations for global addresses.
RFC 4001 [22] Textual address notation.
RFC 2374 [67] The aggregation of IPv6 routes in the default zone.
RFC 3587 [65] An update to RFC 2374, which renders the overly rigid

routing architecture specification obsolete.

The Internet Assigned Numbers Authority (IANA) maintains a list of as-
signed addresses at http://www.iana.org/ipaddress/ip-addresses.htm.

3.10 Packet Filter Considerations

At this point it is quite feasible to add some general anti-spoofing rules to
our packet filter configuration. But we’ll see in section 4.2 that we have to let
some additional traffic through before we can even test a filter configuration,
so we defer the topic of anti-spoofing packet filter rules until section 4.7.

4

Address Configuration

In section 3.4.1 we first saw how to use the ping command (or ping6, but
from now on we’ll use both synonymously) to reach other machines via IPv6.
But specifying an interface with every command is obviously asking far too
much at least from the average user. In this chapter we learn about “proper”
addresses without this handicap and how to configure them.

First we assign addresses statically, like many of us still do in the IPv4
world. That done we take a slight detour and explore “neighbor discovery”,
a mechanism that often goes unnoticed. Then we learn about “stateless au-
toconfiguration” (SAC), the automatism IPv6 provides for automatic address
configuration, which is quite suitably characterized as “DHCP without the
pain”, and after mixing both configuration styles we run a few tests in our
now functional IPv6 subnet. Finally we set up some elementary packet filter
rules.

4.1 Static Address Configuration

To get started we first assign static addresses to our machines. This is gener-
ally not a good idea, but to get bootstrapped there are no feasible alternatives.

Unless you yourself are the friendly local network adminis-
trator, this is the time to make absolutely sure that IPv6
is not yet used in your local network.

Since we don’t want to deal with routing yet, we first put all machines
in the same subnet (or on the same link in official IPv6 terminology). As-
suming a site prefix 2001:db8:fedc::/48 we choose two subnet IDs, abcd
and cdef, to get used to the fact that with IPv6 interfaces tend to have
multiple addresses. We configure all our addresses with the subnet pre-
fixes 2001:db8:fedc:abcd::/64 and 2001:db8:fedc:cdef::/64. As inter-
face IDs we just number our hosts starting with ::1. So our test setup looks
like figure 4.1.

36 4 Address Configuration

::1 ::2 ::3 ::n

. . .

2001:db8:fedc:{abcd,cdef}::/64

Host 1
(Debian)

Host 2
(FBSD)

Host 3
(Solaris)

Host n

(Other)

Fig. 4.1. A simple single-subnet test setup

4.1.1 Temporary Configuration

First we configure our interfaces temporarily. The exact syntax of the
ifconfig call depends on the particular Unix, so you may want to take a
look at your local ifconfig man page.

Debian Sarge Linux offers a choice of two commands to configure the in-
terface, ifconfig and ip. Both configure an interface eth0 as intended:

ifconfig eth0 inet6 add 2001:db8:fedc:abcd::1/64

ifconfig eth0 inet6 add 2001:db8:fedc:cdef::1/64

ip addr add 2001:db8:fedc:abcd::1/64 dev eth0

ip addr add 2001:db8:fedc:cdef::1/64 dev eth0

Either one needs an explicit prefix length specified as /64, otherwise a non-
sensical prefix length will be configured—/0 with ifconfig and /128 with
ip.

FreeBSD 6.1 FreeBSD always assumes a /64 prefix length so we don’t need
to specify it for the interface configuration:

ifconfig lnc0 inet6 2001:db8:fedc:abcd::2

ifconfig lnc0 inet6 2001:db8:fedc:cdef::2

Solaris 10 We configure the interface pcn0 from the command line like this:

ifconfig pcn0 inet6 plumb

ifconfig pcn0 inet6 addif 2001:db8:fedc:abcd::3/64 up

Created new logical interface pcn0:1

ifconfig pcn0 inet6 addif 2001:db8:fedc:cdef::3/64 up

Created new logical interface pcn0:2

The first line is only necessary if we haven’t enabled IPv6 on the interface pcn0
yet; we can achieve the same effect with an empty file /etc/hostname6.pcn0

as explained in section 2.4.1. The other two lines add addresses to the inter-
face. Note that it is necessary to specify the prefix length with the address,
otherwise a nonsensical /128 prefix length is used. 16

4.1 Static Address Configuration 37

Next we verify that the configuration is correct. First we check the current
interface configuration.

Debian Sarge We can also view the results with either command:

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:0C:29:1A:4F:A1

inet6 addr: 2001:db8:fedc:cdef::1/64 Scope:Global

inet6 addr: 2001:db8:fedc:abcd::1/64 Scope:Global

inet6 addr: fe80::20c:29ff:fe1a:4fa1/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:9 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 b) TX bytes:754 (754.0 b)

Interrupt:177 Base address:0x1400

ip -6 addr show eth0

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qlen 1000

inet6 2001:db8:fedc:cdef::1/64 scope global

valid_lft forever preferred_lft forever

inet6 2001:db8:fedc:abcd::1/64 scope global

valid_lft forever preferred_lft forever

inet6 fe80::20c:29ff:fe1a:4fa1/64 scope link

valid_lft forever preferred_lft forever

FreeBSD 6.1 Unsurprisingly, we can also view the results with ifconfig:

ifconfig lnc0 inet6

lnc0: flags=108843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet6 fe80::20c:29ff:fe3c:e7c5%lnc0 prefixlen 64 scopeid 0x1

inet6 2001:db8:fedc:abcd::2 prefixlen 64

inet6 2001:db8:fedc:cdef::2 prefixlen 64

Solaris 10 We can check the configuration with

ifconfig -a6

lo0: flags=2002000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> \

mtu 8252 index 1

inet6 ::1/128

pcn0: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 2

inet6 fe80::20c:29ff:fec0:463c/10

ether 0:c:29:c0:46:3c

pcn0:1: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 2

inet6 2001:db8:fedc:abcd::3/64

pcn0:2: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 2

inet6 2001:db8:fedc:cdef::3/64

which shows all IPv6 interfaces. The output looks slightly unusual because
Solaris creates a logical interface for each address. If we hadn’t specified the

38 4 Address Configuration

prefix length when we configured the interface, then we would see a prefix
length of /128 here. 17

Now we can test that the systems can actually reach each other.

� The interfaces must be physically connected; if they have a “link” LED
it must show that they are physically connected to a subnet.

� They must all be connected to the same subnet.
� The interfaces must be “up” and “running”.
� All machines must be able to ping themselves.
� They can ping each other using the configured addresses. (Watch for

mistyped addresses if this doesn’t work immediately.)

Finally we clean the configuration up again. The easy way to do so is a
reboot but if that is undesirable we reverse our steps instead.

Debian Sarge These are the two variants to undo the configuration:

ifconfig eth0 inet6 del 2001:db8:fedc:cdef::1/64

ifconfig eth0 inet6 del 2001:db8:fedc:abcd::1/64

ip addr del 2001:db8:fedc:cdef::1/64 dev eth0

ip addr del 2001:db8:fedc:abcd::1/64 dev eth0

Both need the prefix length specified as the example shows, otherwise they
will signal an error.

FreeBSD 6.1 The configuration is reverted like this:

ifconfig lnc0 inet6 2001:db8:fedc:cdef::2 delete

ifconfig lnc0 inet6 2001:db8:fedc:abcd::2 delete

Solaris 10 We can undo the configuration changes using the commands

ifconfig pcn0 inet6 removeif 2001:db8:fedc:cdef::3

ifconfig pcn0 inet6 removeif 2001:db8:fedc:abcd::3

ifconfig pcn0 inet6 unplumb

Note that different than the configuration above the deconfiguration does not
allow the prefix length to be specified. 18

� At this point another look at the current interface configuration must
show that the addresses have been properly purged again.

4.1.2 Persistent Configuration

In the previous section we temporarily configured the interfaces with static
IPv6 addresses. A reboot will cause the machines to revert to their initial
state, so the obvious next step is to configure the addresses permanently.

4.1 Static Address Configuration 39

Debian Sarge Like IPv4 addresses, static IPv6 addresses are configured in
/etc/network/interfaces. With multiple addresses this turns out to be
slightly messy:

/etc/network/interfaces

auto eth0

iface eth0 inet6 static

address 2001:db8:fedc:abcd::1

netmask 64

up /sbin/ifconfig eth0 inet6 add 2001:db8:fedc:cdef::1/64

down /sbin/ifconfig eth0 inet6 del 2001:db8:fedc:cdef::1/64

The configuration can then be enabled either with a reboot or doing an

ifdown eth0

ifconfig eth0 down

ifup eth0

Two things are worth mentioning about the configuration:
• It is necessary to add the “netmask” line here, otherwise the inter-

face won’t be configured but ifup will return an excessively informa-
tive (and grammatically challenged) “Don’t seem to be have all the

variables for eth0/inet6” message.
• The interfaces file can only be tricked into configuring multiple addresses

using the up and down statements (which may use ip instead of ifconfig
if you prefer).

FreeBSD 6.1 In /etc/rc.conf the variables starting with “ipv6_” contain
the basic IPv6 configuration:

/etc/rc.conf

ipv6_enable=YES

ipv6_ifconfig_lnc0=2001:db8:fedc:abcd::2

ipv6_ifconfig_lnc0_alias0=2001:db8:fedc:cdef::2

The configuration can be enabled doing a

/etc/rc.d/network_ipv6 restart

which causes a few harmless error messages but otherwise does the job.

Solaris 10 We may have already created an empty /etc/hostname6.pcn0

file before. Now we place the static addresses in there like this:

/etc/hostname6.pcn0

addif 2001:db8:fedc:abcd::3/64 up

addif 2001:db8:fedc:cdef::3/64 up

To enable the configuration we do a

svcadm restart network/physical

or reboot the system. 19

40 4 Address Configuration

To check the configuration the checklist on page 38 applies here as well.
If feasible it is a good idea to reboot the systems first so we only check the
permanent configuration without any interfering temporary changes.

4.2 Inside IPv6: Neighbor Discovery (ND)

At this point we have a chance to take a closer look inside IPv6. This section
covers some issues that aren’t strictly necessary to set up and operate an IPv6
network but are either interesting or useful if some non-trivial problems occur.
As with all sections titled “Inside IPv6”, feel free to skip them, especially on
first reading.

With the test setup so far it is possible to investigate one of the less obvious
new features of IPv6 called neighbor discovery (ND), as specified in RFC 2461
[91]. While neighbor discovery normally does its business entirely unnoticed,
it is both interesting to observe and essential to consider when configuring a
packet filter.

4.2.1 Neighbor Solicitations (NS) and Advertisements (NA)

The primary purpose of neighbor discovery is to provide a substitute for the
address resolution protocol (ARP).

While ARP is specific to both IPv4 and Ethernet, neighbor discovery
is independent of the link-layer protocol. It uses ICMPv6 to provide the
functionality of ARP, using multicasts for its purposes.

Figure 4.2 shows how neighbor discovery works. The FreeBSD node from
our test setup (the “initiator”, 2001:db8:fedc:cdef::2) wants to ping the
Debian node (the “target”, 2001:db8:fedc:cdef::1) but doesn’t know its
link-layer address.

Initiator Target
2001:db8:fedc:cdef::2 ⇒ ff02::1:ff00:1ICMPv6 Type 135 (Neighbor Solicitation), Target: 2001:db8:fedc:cdef::1ICMPv6 option, Type 1 (Source link-layer address), 00:0c:29:1b:55:c0

2001:db8:fedc:cdef::2 ⇐ 2001:db8:fedc:cdef::1

ICMPv6 Type 136 (Neighbor advertisement), Target: 2001:db8:fedc:cdef::1

ICMPv6 option, Type: 2 (Target link-layer address), 00:0c:29:f6:f1:89

Fig. 4.2. Neighbor discovery as an ARP successor

It does however know its IPv6 address. So it first takes the prefix
ff02::1:ff00:0/104 and appends the last 24 bits of the target IPv6 ad-

4.2 Inside IPv6: Neighbor Discovery (ND) 41

dress, together forming the multicast address ff02::1:ff00:1 in this case.1

This is the solicited-node multicast address associated with the target’s IPv6
address. Now it sends its neighbor solicitation, an ICMPv6 packet type, to
this multicast address, attaching its own link-layer address along the way.

The Debian node listens to this multicast address and receives the neighbor
solicitation. It then replies to the initiator’s unicast address with an ICMPv6
neighbor advertisement packet type, containing its link-layer address.

Afterwards, we can examine the neighbor discovery cache to find the as-
sociations of IPv6 and link-layer addresses stored there. The IPv6 equivalent
of the arp -a command as well as its output format depends on the Unix
derivative:

Debian Sarge ip -6 neigh show

FreeBSD 6.1 ndp -a

Solaris 10 netstat -p -f inet6 20

4.2.2 Neighbor Unreachability Detection (NUD)

Neighbor discovery packets are also used for another purpose called neighbor
unreachability detection (NUD). It verifies that the cached mapping between
an IPv6 and a link-layer address is still valid.

With IPv4, the ARP table entries expire after an implementation-de-
pendent timeout if no packet with matching IPv4 and Ethernet source ad-
dresses is received. This approach has two major limitations: The timeout is
“dumb” because it doesn’t take into consideration information possibly avail-
able from the upper protocol layers and communication is checked only in one
direction—from the remote to the local machine.

IPv6 and its neighbor unreachability detection mechanism deal with the
problem in a more intelligent way. They check that communication between
the nodes works not only in one direction but both and it cleverly optimizes
the timeout values in the neighbor discovery cache.

In many cases the transport layer protocols, like TCP and to some degree
UDP, know if a reply packet can be expected soon. The first optimization
called upper layer positive confirmation uses this and lowers the timeout when-
ever a packet is sent out that should cause a reply within a short time.

If the upper layers can’t confirm a cache entry, an “initiator” machine ac-
tively verifies that a cache entry is still valid by sending a neighbor solicitation
to the cached unicast “target” address as shown in figure 4.3. The “target”
answers with a matching neighbor advertisement.

Accordingly, neighbor discovery cache entries are in one of these states:

1 This is an excellent occasion to familiarize yourself with the sometimes slightly
confusing IPv6 address notation. Don’t worry if it all seems somewhat tedious
and error-prone. Eventually it will become more comfortable than decimally
written IPv4 addresses.

42 4 Address Configuration

Initiator Target
2001:db8:fedc:cdef::2 ⇒ 2001:db8:fedc:cdef::1ICMPv6 Type 135 (Neighbor Solicitation), Target: 2001:db8:fedc:cdef::1ICMPv6 option, Type 1 (Source link-layer address), 00:0c:29:1b:55:c0

2001:db8:fedc:cdef::2 ⇐ 2001:db8:fedc:cdef::1

ICMPv6 Type 136 (Neighbor advertisement), Target: 2001:db8:fedc:cdef::1

ICMPv6 option, Type: 2 (Target link-layer address), 00:0c:29:f6:f1:89

Fig. 4.3. Neighbor unreachability detection

Incomplete Neighbor discovery is currently performed on this entry, i.e. a
multicast neighbor discovery packet has been sent but no corresponding
advertisement has arrived yet.

Reachable Neighbor discovery has been successful and within the cache
time we have received some confirmation that the neighbor is still reach-
able.

Stale The cache entry has expired but the neighbor wasn’t found unreach-
able yet. At this point no action is taken unless another packet is sent to
the neighbor.

Delay The cache entry is outdated as with a stale entry but a packet has
been sent to the last known address in the hope that upper layers will
shortly confirm the neighbor to be reachable.

Probe A unicast neighbor solicitation has been sent but no answer has ar-
rived yet.

As a consequence, IPv6 reacts far more quickly and reliably to changing
network configurations while reducing the traffic overhead in the network.

4.2.3 Duplicate Address Detection (DAD)

The same mechanism is also used when an interface tries to configure a new
address, to verify that the intended address is yet unused. Figure 4.4 shows
what happens.

There is a difference between “normal” neighbor discovery and duplicate
address detection: Because the interface can’t use the address until after the
duplicate address detection successfully verified that the intended address is
available, the addresses on the initiator side differ. The initiator uses the
unspecified address :: as the source address of the neighbor solicitation and
doesn’t send its link-layer address along as an ICMPv6 option. If another
machine already uses the address, it must reply to the initiator with a neigh-
bor advertisement using the all-node link-local multicast address ff02::1 as
destination because the initiator cannot be reached through a unicast address
yet.

4.3 Stateless Address Autoconfiguration (SAC) 43

Initiator Target

:: ⇒ ff02::1:ff00:1ICMPv6 Type 135 (Neighbor Solicitation), Target: 2001:db8:fedc:cdef::1

ff02::1 ⇐ 2001:db8:fedc:cdef::1

ICMPv6 Type 136 (Neighbor advertisement), Target: 2001:db8:fedc:cdef::1

ICMPv6 option, Type: 2 (Target link-layer address), 00:0c:29:f6:f1:89

Fig. 4.4. Duplicate address detection

If the initiator doesn’t receive a reply, then it assumes that the address is
available, subscribes to the solicited-node multicast address and starts to use
the address.

4.3 Stateless Address Autoconfiguration (SAC)

Since IPv6 addresses are all too easy to mistype, static address configuration
is generally undesirable. IPv6 offers an elegant mechanism called stateless
(address) autoconfiguration (SAC), or autoconfiguration for short, to provide
for automatic address configuration. It is sometimes characterized as “DHCP
without the pain” because it elegantly avoids a range of problems that often
occur with DHCP.

4.3.1 The Problems with DHCP

So what’s wrong with DHCP? The easy answer is: It is simply too unreli-
able to be used for “mission-critical” systems. Maybe it is “good enough”
for workstations, high performance cluster nodes and the occasional visitor’s
notebook. But I have yet to see a data center where IP addresses are assigned
to servers using DHCP instead of manual, static configuration.

So what exactly is wrong with DHCP?

• Since DHCP is a link-layer protocol it can’t be routed like ordinary IP
traffic. It requires special DHCP routers (called “relays”) for every subnet
connected. These relays are often run on router hardware, putting an
additional burden on them and the network administrators who need to
maintain them.

• Large organizations often have distinct staff groups for network and server
administration. These need to keep in close sync since all modifications to
the network need to be reflected in the DHCP configuration.

44 4 Address Configuration

• While it isn’t impossible to make DHCP servers redundant, doing so either
requires fancy cluster setups, which are a problem by themselves, or an
abundance of addresses to use distinct address ranges on the redundant
DHCP servers. (This is obviously more of a problem for IPv4 than IPv6.)

• DHCP servers need to maintain state; more precisely, they need to keep
track of which link-layer address “owns” an IP address and until when. If
the “lease database” that keeps track of this state gets damaged, addresses
can be assigned to multiple machines. (Again, this problem is worse with
IPv4 since it doesn’t enforce duplicate address detection.)

• DHCP is very susceptible to rogue DHCP servers. Anybody introducing
a misconfigured DHCP server, either out of malice or ignorance, will se-
riously disrupt network operation—and there have been cases of people
installing some “server”operating system on their company notebooks be-
fore. (Yet again, this is worse with IPv4 than IPv6: IPv4 will overwrite
address configurations while IPv6 only adds addresses to an interface con-
figuration without removing the already configured addresses.)

IPv6 deals with all these problems using a far simpler, more reliable ap-
proach. It uses the huge address space in every single subnet to make address
collisions next to impossible. The result, called “stateless address autoconfig-
uration”, solves or at least mitigates all the problems DHCP has introduced
to the IPv4 world.

4.3.2 Autoconfiguration Concepts

To understand stateless autoconfiguration we need three definitions:

Node A device that supports IPv6.
Router A node that accepts packets on behalf of other nodes, usually to

forward them.
Host A node that is not a router.

Throughout the rest of the book, in network diagrams we draw hosts as
squares and routers as circles, as in figure 4.5.

Host Router

Fig. 4.5. Hosts and routers in network diagrams

The distinction between hosts and routers is essential to stateless auto-
configuration because only routers maintain the network prefixes assigned to
a subnet. But different than DHCP servers they don’t keep track of which

4.3 Stateless Address Autoconfiguration (SAC) 45

address is assigned to which host or link-layer address. It is entirely up to each
host to pick its interface ID. So when a host first enables a network interface,
this is what happens:

1. The host picks an interface ID, usually derived from the associated link-
layer address. For Ethernet, section 4.5.3 has the details.

2. It creates a link-local address from the prefix fe80::/64 and the interface
ID.

3. It checks if another node is already using that address by doing a duplicate
address detection.

So far, nothing unexpected has happened; up to here routers and statically
configured nodes behave exactly the same. But the next steps are unique to
hosts:

1. The host queries all routers on the subnet with a router solicitation (RS)
about additional prefixes. The routers respond with solicited router ad-
vertisements (RA). These router advertisements contain a list of prefixes
allocated to the subnet and an indicator if the router is willing to provide
routing services to the connected hosts.

2. For every prefix received the host proceeds as with the link-local prefix
and configures another address to the interface.

3. The host keeps listening for updated prefix information and reconfigures
its addresses whenever necessary. Routers send these updates as unso-
licited router advertisements both periodically and whenever the network
configuration changes.

This algorithm obviously requires that it is virtually impossible that two hosts
try to use the same interface ID. Computing the interface ID from the Ethernet
address ensures this, but requires a large interface ID. Since other link-layer
protocols may use even longer addresses than Ethernet, the interface ID has
been made large enough to hold them. At this point using 64 bits for the
“host part” of an address finally starts to make sense after all.

Stateless autoconfiguration provides a host with more information than
network prefixes: It tells the host which routers are available on the subnet
and are willing to provide routing services. Unlike an IPv4 host, an IPv6 host
will not have a single “default route” but a list of “default routers”. Whenever
it tries to send a packet to an address not directly attached to the subnet,
called an off-link address, the host will forward the packet to one of the routers
and let that router take care of the packet. (This is a slight simplification;
section 7.1 explains the details.)

Routers don’t use stateless autoconfiguration to receive their addresses;
they need to be explicitly configured with addresses and the prefix information
to advertise. If they accepted prefixes from other routers on the same subnet,
then removing a prefix would require synchronized intervention on all routers
at the same time.

Why is stateless autoconfiguration such an improvement over DHCP?

46 4 Address Configuration

First of all, we neither need another server in every subnet nor a relay
agent on a router that isn’t designed as a server. Neither do we need to get a
server administrator involved with the management of IPv6 addresses, since
addresses are now solely managed by routers.

Next, it is trivial to provide all the redundancy wanted by just plugging
redundant routers into the network. Since the routers don’t need to keep state
on which IP address is leased to which link-layer address until when, this is
quite straightforward.

Without the need to keep state on the routers, a failing router won’t cause
any problems. It can be fixed or replaced and brought up without a risk of
re-assigning addresses already given to another host.

A rogue router is far less likely than somebody installing a “server” op-
erating system accidentially enabling DHCP. But even if this happens, only
additional addresses are passed to the hosts. They will still be reachable
through their proper addresses. Disconnecting the rogue router will cause
the bad addresses to expire and the network to converge to proper operation
again.

Finally, stateless autoconfiguration makes it feasible to renumber a net-
work with new prefixes on the fly—chapter 24 explains the procedure in detail.

In the rest of this section we configure nodes to support stateless autocon-
figuration. In the most simple case a single router and a single host suffice
for some basic experiments. The following examples refer to the slightly more
complex setup shown in figure 4.6.

2001:db8:fedc:{abcd|cdef}::/64

Host 1
(Debian)

Host 2
(FBSD)

Host 3
(Solaris)

Router 1
(Debian)

Router 2
(FBSD)

Router 3
(Solaris)

Fig. 4.6. The stateless autoconfiguration test setup

4.3.3 Router Configuration

First we tackle the more complex task and configure the routers as advertising
routers. While the BSDs and Solaris only require a few lines of configuration,
Linux needs an additional software package to be installed

It is possible to configure a router in such a way that it advertises pre-
fixes that it doesn’t use itself on its interface; after all, any communication

4.3 Stateless Address Autoconfiguration (SAC) 47

with these routers can be done using only link-local addresses. But experi-
ence shows that doing so is extremely confusing. For this reason some router
implementations use the same configuration for interfaces and router adver-
tisements. To do a clean job we make sure that our routers configure addresses
with all the prefixes they advertise even on those implementations that use
separate configurations for interfaces and router advertisements.

Debian Sarge First we need to install the radvd package to turn a node
into an advertising router.

Then we create a file /etc/radvd.conf where we configure the prefixes to
advertise on each interface. Since we only have a single interface eth0, these
lines will do:

/etc/radvd.conf

interface eth0 ‖ The interface to configure
{

AdvSendAdvert on; ‖ Enable router advertisements
prefix 2001:db8:fedc:abcd::/64 { }; ‖ The first prefix to advertise
prefix 2001:db8:fedc:cdef::/64 { }; ‖ The second prefix to advertise

};

Unfortunately, the radvd boot script does enable packet forwarding but
doesn’t configure the kernel to ignore router advertisements from other
routers. Not only does this violate the specifications but it is actually very
confusing when we need to debug a network. To make the kernel ignore router
advertisements, we need to add a line

/etc/sysctl.conf

net.ipv6.conf.default.accept_ra=0

to /etc/sysctl.conf.
To complete the configuration we need to configure the router’s interfaces

in /etc/network/interfaces as we have already done in section 4.1.2 on
page 38.

Finally, the easiest way to start the radvd and ensure that no addresses
are configured from another router’s advertisements is a quick reboot.

FreeBSD 6.1 FreeBSD keeps all its relevant network configuration in the
file /etc/rc.conf. If we want to use normal interface IDs derived from the
Ethernet address, then we use this configuration:

/etc/rc.conf

ipv6_enable=YES

ipv6_gateway_enable=YES

rtadvd_enable=YES

rtadvd_interfaces="lnc0"

ipv6_prefix_lnc0="2001:db8:fedc:abcd 2001:db8:fedc:cdef"

The first line enables IPv6 in general, the second enables packet forwarding

48 4 Address Configuration

and the third starts the router advertisement daemon rtadvd with the fourth
line optionally specifying the interfaces that the rtadvd will service. The last
line contains all the prefixes we want to use. Note that we can’t use the double
colon notation here; the boot scripts can’t handle them.

If we rather want to configure the addresses explicitly to ensure that
routers have short addresses, then we might substitute the last line with some-
thing like

/etc/rc.conf

ipv6_ifconfig_lnc0=2001:db8:fedc:abcd::2

ipv6_ifconfig_lnc0_alias0="2001:db8:fedc:abcd:: anycast"

ipv6_ifconfig_lnc0_alias1=2001:db8:fedc:cdef::2

ipv6_ifconfig_lnc0_alias2="2001:db8:fedc:cdef:: anycast"

This configures the addresses fully, using an interface ID of ::2. Finally we
either need to reboot the router or run the commands

/etc/rc.d/network_ipv6 restart

/etc/rc.d/rtadvd start

to enable the configuration.
By default, the rtadvd router advertisement daemon reads the addresses

configured to all interfaces that it serves and uses the addresses found there
for its advertisements.

Solaris 10 First we need to install the SUNWroute package if it isn’t installed
yet; it contains the in.ndpd daemon which is responsible for sending router
advertisements to a subnet.

Then we configure the prefixes in /etc/inet/ndpd.conf:

/etc/inet/ndpd.conf

ifdefault AdvSendAdvertisements true

prefix 2001:db8:fedc:abcd::/64 pcn0

prefix 2001:db8:fedc:cdef::/64 pcn0

The first line enables router advertisements on all interfaces and the others
each assign a prefix to the interface. We enable both packet forwarding and
the in.ndpd daemon using the commands

routeadm -e ipv6-forwarding

routeadm -u

This automatically adds addresses with the configured prefixes to the appro-
priate interfaces; we still need an empty /etc/hostname6.pcn0 file, but we
don’t configure the addresses there anymore. 21

Even if we don’t have a host to test our router against, we can do some
preliminary testing.

� If possible, reboot the router to ensure that you test the persistent
configuration only.

4.3 Stateless Address Autoconfiguration (SAC) 49

� Doing an ifconfig -a must show that the interfaces are “up” and
“running”.

� It must also show that the interfaces have configured the intended
addresses.

� Running either ps auxw or ps -ef must show a running router adver-
tisement daemon.

� A packet sniffer must show unsolicited router advertisements every 200
to 600 seconds; the time between router advertisements is randomized
to prevent synchronization effects.

For now this is all we need to know about router advertisement confi-
guration. In section 16.5 we take a closer look at the router advertisement
daemons and their various tunable parameters.

4.3.4 Host Configuration

Compared to the router configuration, making a host use stateless autocon-
figuration is quite straightforward; we don’t need to configure anything but
the fact that the host should support IPv6.

Debian Sarge If the interface is also configured for IPv4, nothing needs to
be done.

If however the interface is not used with IPv4, then it is necessary to trick
the boot scripts so they enable the interface at all. An entry like

/etc/network/interfaces

auto eth0

iface eth0 inet manual

up /sbin/ip -6 link set eth0 up

brings the interface up using autoconfiguration.

FreeBSD 6.1 When we enabled IPv6 with the line

/etc/rc.conf

ipv6_enable=YES

in /etc/rc.conf we already enabled stateless autoconfiguration, turning the
machine into a host. Nothing else needs to be done.

Solaris 10 Similar to FreeBSD, enabling IPv6 on an interface with an empty
file /etc/hostname6.pcn0 already makes the machine support stateless auto-
configuration. Only if we did a “reduced networking core installation” would
we need to install the SUNWroute package. 22

Even without a router we can test a host to some degree:

� First reboot the host if possible.
� During the reboot use a packet sniffer on a router to verify that the

host sends router solicitations to the subnet.

50 4 Address Configuration

� Use ifconfig -a to check that the interfaces are “up” and “running”
and show a link-local address.

In section 4.6 we do some more extensive testing in a subnet with both a host
and a router.

4.4 Mixing Static and Automatic Configuration

Sometimes we may want to configure static addresses to a host; maybe we
want to advertise these addresses in the DNS and don’t want them to be
based on the machine’s Ethernet hardware, maybe we want to build a high-
availability cluster with a virtual IPv6 address.

It is generally advisable to configure these static addresses in addition to
autoconfiguration addresses only. Doing so will enable us to reach a machine
even if we forgot to change its configuration during a network renumbering.

It is generally possible to disable autoconfiguration entirely. This may
however affect the router discovery as well, so we must be prepared to configure
our routes, too.

The details again depend on the particular Unix derivative.

Debian Sarge By default Debian mixes static and autoconfigured addresses.
If we add a line

/etc/sysctl.conf

net.ipv6.conf.default.accept_ra=0

to /etc/sysctl.conf, then our node won’t accept router advertisements any-
more. We will need to configure our default routers, too. Alternatively, setting

/etc/sysctl.conf

net.ipv6.conf.default.autoconf=0

will disable address autoconfiguration but continue to discover routers through
the router advertisements received.

FreeBSD 6.1 If we configure static addresses, FreeBSD by default disables
the autoconfiguration mechanism including default router discovery.

To re-enable autoconfiguration in the presence of static addresses some
minor trickery is necessary. In /etc/sysctl.conf the line

/etc/sysctl.conf

net.inet6.ip6.accept_rtadv=1

makes the kernel listen to router advertisements and a line

/etc/rc.local

rtsol -a

in /etc/rc.local triggers a router solicitation after the static addresses have

4.5 Inside IPv6: Autoconfiguration Details 51

been configured. Alternatively, if the addresses are only configured using
the ipv6_ifconfig_lnc0_alias〈n〉 variables and ipv6_ifconfig_lnc0 re-
mains undefined, autoconfiguration will remain enabled. This latter approach
is however undocumented and may fail after a system upgrade if the boot
scripts change.

There is no way to avoid autoconfiguring addresses while still obtaining
default routers through router advertisements.

Solaris 10 Provided that the SUNWroute package is installed to support
stateless autoconfiguration, static and autoconfigured addresses are merged.

To disable this either uninstall SUNWroute or add a line

/etc/inet/ndpd.conf

ifdefault StatelessAddrConf off

to /etc/inet/ndpd.conf. This will still configure the prefixes to the interface
but show them as “NOLOCAL”, which means “without an address of this prefix”.

There is no way to prevent a host from gathering default routers through
router advertisements. 23

4.5 Inside IPv6: Autoconfiguration Details

If we didn’t make a mistake with our router and host configuration it should
be fairly straightforward to test. But if something went wrong it is sometimes
helpful to understand in more detail how autoconfiguration works.

4.5.1 Address States

Addresses on an interface pass through multiple states. If we debug a problem
related to addresses, then it is often useful to check that all addresses are in
a state that allows for their use.

These are the address states:

Tentative When an interface tries to configure a new address, this address
is considered tentative until duplicate address detection has successfully
assured that no other node is currently using the address. If the dupli-
cate address detection fails, some implementations continue to show this
address as “tentative” with their ifconfig command and similar.

Duplicate When duplicate address detection failed, showing that another
interface already uses the desired address, the address is normally shown
as “duplicate”.

Valid Once an address has passed the duplicate address detection it becomes
valid and can be used. With autoconfigured addresses there are two sub-
states, preferred and deprecated.

52 4 Address Configuration

Preferred Autoconfigured addresses that are preferred are valid addresses
that can be used when a new connection is established. Addresses are only
preferred if the associated preferred lifetime (pltime) is positive. With
link-local and statically configured addresses the preferred lifetime is al-
ways infinite, otherwise it is set according to the value received by router
advertisements.

Deprecated Addresses that can still be used for established connections
but shouldn’t be used for new ones are called deprecated. Their preferred
lifetime is zero but their valid lifetime (vltime) is still positive. The valid
lifetime is always at least as large as the preferred lifetime.

Invalid When the valid lifetime drops to zero, the address becomes invalid
and can’t be used anymore.

How to make the interface state and the lifetime counters visible depends
on the Unix derivative:

Debian Sarge We need to use the ip command here with the options addr
show.

FreeBSD 6.1 The additional option -L extends the output of ifconfig to
include the lifetime values.

Solaris 10 There is no documented way to display the lifetime values. 24

4.5.2 Router Solicitations (RS) and Advertisements (RA)

Router solicitations and router advertisements are ICMPv6 packets that are
sent to the all-routers and all-nodes link-local multicast addresses (ff02::2
and ff02::1), respectively. Figure 4.7 shows an example from the test net-
work.

Host Router
fe80::20c:29ff:feb1:e042 ⇒ ff02::2

ICMPv6 Type 133 (Router solicitation)

ff02::1 ⇐fe80::20c:29ff:fe94:5d7

ICMPv6 Type 134 (Router advertisement)

Router lifetime: 1800s

Prefix information: 2001:db8:fedc:cdef::/64, pltime=7d, vltime=30d

Prefix information: 2001:db8:fedc:abcd::/64, pltime=7d, vltime=30d

Fig. 4.7. A sample router solicitation/advertisement exchange

The router advertisement contains two important information items: The
router lifetime holds the number of seconds that the router expects to be

4.5 Inside IPv6: Autoconfiguration Details 53

usable as a default router; if it is zero, the router provides address prefixes
but cannot be used as a default router. The prefix information list contains
prefixes, their prefix length and their preferred and valid lifetimes. The default
preferred and valid lifetimes are seven and thirty days, respectively. Notice
that the router sends its reply to the all-nodes link-local multicast address
(ff02::1) so all nodes can update their prefix and router data.

Additionally, routers periodically and after changes send unsolicited router
advertisements. They look exactly the same as replies to router solicitations
and are sent at randomized intervals, usually within 200 to 600 seconds.

Finally, when a router is shut down, it is supposed to send another router
advertisement with a router lifetime of 0 if possible.

Router advertisements actually contain some more information. Sec-
tion 16.5 takes a closer look, beyond that see RFC 2461 [91] and RFC 2462 [110]
for details.

4.5.3 Ethernet Addresses and Interface IDs

Figure 4.8 shows how a 48 bit Ethernet address is transformed into a 64 bit
interface ID. Bit 7 in the first byte of the Ethernet address is called the

x x
x x
x 0
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x 1
x x

x x
x x
x x
x x

x x
x x
x x
x x

1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 0

x x
x x
x x
x x

x x
x x
x x
x x

x x
x x
x x
x x

a b : c d : e f : g h : i j : k l

a b′ c d : e f F F : F E g h : i j k l

Fig. 4.8. Computing an interface ID from an Ethernet address

global bit and is always 0, indicating that this address is meant to be globally
unique. The transformation toggles this bit, which has the great advantage
that autoconfigured addresses become tedious to write and leave the “shorter”
addresses for static configuration purposes. After three bytes from the Eth-
ernet address, two extra bytes with the fixed values FF and FE are inserted,
followed by the remaining three bytes of the Ethernet address.

It takes a bit of practice to recognize Ethernet addresses and their associ-
ated interface IDs. At first glance, the Ethernet address 00:0C:29:1A:4F:A1

54 4 Address Configuration

and the interface ID 20c:29ff:fe1a:4fa1 don’t look too similar. But with a
bit of practice this will soon change.

The transformation is defined in RFC 4291 [64, appendix A]. The resulting
64 bit address format is called IEEE EUI-64 format.

4.6 Testing and Debugging

With at least one host and router in a subnet it is possible to do some more
testing. This helps to gather some experience dealing with autoconfiguration
and related network problems.

Normally, autoconfiguration should work fine unless you mistype an ad-
dress. Otherwise, problems are best found checking the network stack from
the bottom up.

� All network interfaces and switch ports must show a working link if
they have the customary link LEDs.

� All nodes must be connected to the same subnet.
� All interfaces must be “up” and “running”.
� All hosts must have their interface configured with addresses from all

prefixes advertised by the routers. If they don’t, either wait for about
ten minutes or manually send a router solicitation from one of the
hosts; the BSDs have a command rtsol for this purpose.

� All hosts must be able to ping each other with all the advertised pre-
fixes. Again, if this doesn’t work, first check if you mistyped an address.

� All routers must be able to ping each other with the prefixes they both
advertise. They must not be able to ping each other with prefixes only
one of them advertises—section 7.7.6 explains why.

If possible, connect a packet sniffer to the network. While it won’t show
all traffic in a switched network, it shows at least packets that are sent as
multicasts to all connected nodes. If possible, run it on one of the routers;
doing so will show more of the relevant packets than running it on a host.

� Whenever a host boots, the packet sniffer must show the router solic-
itations it sends as well as the associated router advertisements sent
from all routers. Note that we won’t see the router solicitations in a
switched network with a multicast-aware “smart” switch unless we run
the packet sniffer on a router’s interface.

� When a router boots, it sends an unsolicited router advertisement to all
nodes. All hosts then configure addresses with the prefixes advertised
by the router.

� Additionally, all routers must send unsolicited router advertisements,
usually at intervals of no more than ten minutes.

If you have some time at hand you can do even more testing to watch the
behaviour of the stateless autoconfiguration mechanism.

4.7 Packet Filter Considerations 55

� When all routers advertising a prefix are shut down, all nodes must
show the preferred and valid lifetimes of their associated address to be
decreasing, eventually changing the address from the preferred to the
deprecated and finally to the invalid state.

� When a host is disconnected and plugged into a different subnet, it
must obtain new addresses and expire its old addresses. After a reboot
it must show only the new addresses, being fully functional again in
the new subnet.

Again, this is an excellent occasion to use a packet sniffer to get some
practical experience and a feeling for what a working setup as well as some
intentionally provoked problems look like.

4.7 Packet Filter Considerations

To set up a basic packet filter, we need to deal with three independent sub-
tasks: We must sanitize “broken” packets as well as we can, we must filter
spoofed packets and we must allow some essential ICMPv6. To test if our
filter isn’t too restrictive, we also allow ICMPv6 echo requests and replies so
we can use ping.

4.7.1 From Stateless Filtering to Rewriting Filters

The first generation of packet filters only analyzed individual packets. Some
IPv6 packet filters are still such stateless filters.

More powerful stateful filters or connection tracking filters analyze packets
in the context of a communication flow. While this needs more resources on
the filter, it can prevent a range of attacks that can only be detected if a
packet is analyzed within the context of the communication flow it belongs
to.

Yet more powerful are rewriting filters that not only analyze packets but
also rewrite part of them to prevent attacks that abuse some implementation
bugs on the victim machine, like predictable “random number generators”.

Debian Sarge At this time, the ip6tables filter is stateless and only partly
adapted to the peculiarities of IPv6.

FreeBSD 6.1 The pf filter is a rewriting filter. It generally supports IPv6
but can’t filter by most IPv6-specific options. Its stateful filter can’t handle
multicast traffic properly.

Solaris 10 The packet filter shipped with Solaris 10 only filters IPv4. 25

56 4 Address Configuration

4.7.2 Packet Sanitation

The more powerful a filter technology is, the less effort it is to filter broken
packets. Right now, IPv6 filters are lagging behind their IPv4 counterparts
but are slowly catching up.

Debian Sarge Since iptables isn’t (yet) capable of stateful filtering, it
doesn’t offer much to sanitize network packets.

It does filter some IP options, notably routing headers (which are the IPv6
equivalent of IPv4 source routing), though.

FreeBSD 6.1 Since pf is stateful and offers some rewriting features, it au-
tomatically sanitizes to a degree by itself.

But it doesn’t let us filter by individual IP options; there is a badly doc-
umented allow-opts feature which enables a rule to admit “all” IP options
while the default behaviour is to block packets with “any” IP option.

Additionally, the parentheses notation that pf uses to match addresses and
prefixes against current interface configurations is at least partially broken
with FreeBSD 6.1, so we can’t rely on it. 26

4.7.3 Packet Spoofing (Ingress) Filters

It is good practice to filter incoming packets based on the interface through
which they arrive, because this prevents attacks that use spoofed source ad-
dresses. But with autoconfiguration this becomes more difficult than with a
more static address configuration.

With autoconfiguration, IPv6 addresses may change over time. This poses
a problem to some packet filters that only allow configuration with fixed ad-
dresses or address prefixes.

Some packet filters support notions like “all addresses configured on in-
terface X” or similar. With others, every time autoconfiguration adds or
removes an address the packet filter configuration needs to be updated.

Debian Sarge Filter rules are “static”; they don’t adapt to changing inter-
face configurations.

FreeBSD 6.1 By default, filter rules are “static”: If an interface name is
given as the source or destination, then the configuration line expands to a
set of rules with each holding one of the interface’s addresses at the time
that the configuration is loaded. If however the interface name is put in
parentheses, then every time the rule is evaluated the packet is checked against
the current interface configuration; again, unfortunately this feature doesn’t
work properly with FreeBSD 6.1.

If we use a pf configuration to allow connections from a trusted “inside
network” to some untrusted “outside network” only, then packet spoofing
filters may even be unnecessary if we filter all traffic statefully: Since only

4.7 Packet Filter Considerations 57

trusted parties can create state, spoofing attempts will be blocked because
they can’t create the necessary state from outside. 27

4.7.4 Essential ICMPv6 Packets

We need to let neighbor discovery packets pass unless we want to use stati-
cally configured neighbor caches. For stateless autoconfiguration we also need
router solicitations and router advertisements. Finally, we also need multicast
listener discovery packets. They use the ICMPv6 types 130–132 and 143.

None of these ICMPv6 packets need to be forwarded, they are only needed
within a single subnet. But without these, IPv6 simply won’t work.

We must also permit ICMPv6 error packets. Stateful filters usually do so
automatically, but stateless filters may require explicit rules to permit these
packets. They must also be forwarded on a router.

A server may have multiple addresses and a DNS record for each address,
so a properly written client will use each address in turn until it actually
reaches the server. If we discarded ICMPv6 error packets, then the clients
would wait for a timeout on each address before trying the next. The resulting
delay is unacceptable at least if a user is actually waiting for a response.

4.7.5 Sample Filter Configurations

The entire layout of a filter configuration is highly dependent on the features
that the particular filter has to offer. That makes the following sample con-
figurations look quite different.

Additionally, there are few well-established approaches to IPv6 packet fil-
tering. The following filter rules are a snapshot of today’s still immature
state-of-the-art configuration strategies, but it is likely that growing experi-
ence and new features in future releases of the available filter implementations
will make them insufficient and obsolete in a short time.

Debian Sarge With the limited filter functionalities of ip6tables a basic
filter setup might look like this. For now we only need to filter incoming
packets, but eventually we will also filter outbound and forwarded packets, so
we already set up chains for them as well.

/etc/ip6tables.sh

#! /bin/bash

INTERFACES="eth0"

ADDR_eth0="2001:db8:fedc:abcd::1 2001:db8:fedc:cdef::1"

First we define what our network looks like. These variables are used later on
to generate some anti-spoofing rules.

58 4 Address Configuration

/etc/ip6tables.sh

drop () { /sbin/ip6tables -j DROP --append "$@"; }

accept () { /sbin/ip6tables -j ACCEPT --append "$@"; }

chain () { /sbin/ip6tables -N "$@"; }

call () { chain=$2; srcchain=$1; shift; shift;

/sbin/ip6tables -j $chain --append $srcchain "$@"; }

ret() { /sbin/ip6tables -j RETURN --append "$@"; }

These shell functions simplify the syntax of the subsequent script. The drop

function silently discards a packet; as soon as the REJECT target works, it
should probably be substituted here. The accept function immediately ac-
cepts a packet. The chain function just creates a new filter chain. With call

we can call another such chain. Finally, ret ends a filter chain, returning to
the calling chain.

/etc/ip6tables.sh

/sbin/ip6tables -P INPUT DROP

/sbin/ip6tables -P FORWARD DROP

/sbin/ip6tables -P OUTPUT DROP

/sbin/ip6tables --flush

/sbin/ip6tables -X

Before we do anything we clean out the existing configuration.

/etc/ip6tables.sh

chain SANITIZE

call INPUT SANITIZE

drop SANITIZE --match ipv6header --header route --soft

ret SANITIZE

Filtering broken packets is extremely limited with ip6tables. We just drop
all packets with a routing header, which is the IPv6 equivalent of source
routing.

/etc/ip6tables.sh

chain DESPOOF

call INPUT DESPOOF

for i in $INTERFACES

do

eval addrs=\"\$ADDR_$i\"

for a in $addrs

do

ret DESPOOF -s $a -i lo

drop DESPOOF -s $a

drop DESPOOF -s $a/64 -i ’!’ $i

done

done

On routers the next line must be replaced with more specific rules.

ret DESPOOF

4.7 Packet Filter Considerations 59

We drop all incoming packets with one of our addresses as its source address
and all packets coming in from the wrong interface. On routers we will later
on replace the last line with some more filter rules that must match the local
network topology.

/etc/ip6tables.sh

chain CHECKSRC

call INPUT CHECKSRC

ret CHECKSRC -s :: -p icmpv6 --icmpv6-type neighbor-solicitation

ret CHECKSRC -s ::1 -i lo

ret CHECKSRC -s fe80::/10

ret CHECKSRC -s fc00::/7

ret CHECKSRC -s 2000::/3

drop CHECKSRC

Next we check if the source addresses are actually valid. Note that we can’t
check for anycast addresses here. The first filter rule passes neighbor solicita-
tions from the unspecified address, so duplicate address detection works.

/etc/ip6tables.sh

chain CHECKDST

call INPUT CHECKDST

ret CHECKDST -d fe80::/10

ret CHECKDST -d fc00::/7

ret CHECKDST -d 2000::/3

ret CHECKDST -d ff00::/8

drop CHECKDST

Next we check the destination address. Only the addresses listed in these
rules are valid destination addresses.

/etc/ip6tables.sh

Deal with ICMPv6

chain ICMP

call INPUT ICMP -p icmpv6

call OUTPUT ICMP -p icmpv6

accept ICMP -p icmpv6 --icmpv6-type destination-unreachable

accept ICMP -p icmpv6 --icmpv6-type packet-too-big

accept ICMP -p icmpv6 --icmpv6-type ttl-exceeded

accept ICMP -p icmpv6 --icmpv6-type parameter-problem

The first ICMPv6 types we need to allow deal with various errors. These
packet types must also be forwarded on a router.

/etc/ip6tables.sh

accept ICMP -p icmpv6 --icmpv6-type neighbour-solicitation

accept ICMP -p icmpv6 --icmpv6-type neighbour-advertisement

Without neighbor discovery IPv6 doesn’t work too well.

60 4 Address Configuration

/etc/ip6tables.sh

accept ICMP -p icmpv6 --icmpv6-type 130

accept ICMP -p icmpv6 --icmpv6-type 131

accept ICMP -p icmpv6 --icmpv6-type 132

accept ICMP -p icmpv6 --icmpv6-type 143

These ICMPv6 types are used for multicast listener discovery. Without them,
a smart switch won’t send us the multicasts we want and multicast routing
won’t work.

/etc/ip6tables.sh

accept ICMP -p icmpv6 --icmpv6-type router-solicitation

accept ICMP -p icmpv6 --icmpv6-type router-advertisement

With router discovery we need to allow router solicitations and router adver-
tisements. If we wanted to be particularly smart we’d allow router solicita-
tions only from hosts to routers and router advertisements only from routers
to hosts and the link-local all-node multicast address.

/etc/ip6tables.sh

accept ICMP -p icmpv6 --icmpv6-type echo-request

accept ICMP -p icmpv6 --icmpv6-type echo-reply

drop ICMP

If we want to use ping we need to allow echo requests and echo replies. We
drop all other ICMPv6 packets.

/etc/ip6tables.sh

accept OUTPUT

For now we don’t filter outgoing packets.

FreeBSD 6.1 The pf filter is quite powerful. But still we need to do some
work ourselves, like checking the source and destination addresses.

/etc/pf.conf

ifs="(lnc0)"

localnets="(lnc0:network) fe80::/10"

First we define the interfaces and addresses that we want to filter. Notice the
parentheses around the entries: They make the filter use the current addresses
of each interface whenever a filter rule is evaluated. Without them, the packet
filter only looks up the addresses and prefixes associated with the interfaces
when it installs rules, which improves performance but introduces the risk
that the packet filter uses outdated addresses if the interface configuration
changes. As the warning on page 19 points out, this doesn’t work reliably
with FreeBSD 6.1.

/etc/pf.conf

scrub in all

4.7 Packet Filter Considerations 61

Packet sanitation is extremely simple because pf does a lot of work in its
stateful filter engine. And since we don’t have much control on what IP
options to filter, we can’t add any more lines here to filter dangerous options.

/etc/pf.conf

pass in quick on lo0 inet6 from {(lo0) $ifs} to {(lo0) $ifs ff00::/8}

antispoof quick for { (lo0) $ifs }

As far as the subnets connected to our node are concerned, anti-spoofing is
also quite simple as long as we “trust” our loopback interface. If we wanted
to control traffic on the loopback interface, for example to control which local
users use which local services, this would become far more complex.

/etc/pf.conf

block in inet6 proto icmp6 \

from :: to ff02::1:ff00:0/104 \

icmp6-type neighbrsol code 0 tag GOODSRC

block in on lo0 inet6 from {(lo0) $ifs} to {(lo0) $ifs} tag GOODSRC

block in inet6 from fe80::/10 to {$ifs fe80::/10} tag GOODSRC

block in inet6 from fc00::/7 to any tag GOODSRC

The next line must be replaced on a router.

block in inet6 from 2000::/3 to any tag GOODSRC

block in inet6 from {(lo0) $ifs} to ff01::/16 tag GOODSRC

block in inet6 from {(lo0) $ifs} to ff11::/16 tag GOODSRC

block in inet6 from fe80::/10 to ff02::/16 tag GOODSRC

block in inet6 from fe80::/10 to ff12::/16 tag GOODSRC

block in quick inet6 all ! tagged GOODSRC

Now we check if the source addresses are valid. It isn’t important if we block
or pass packets here; adding the tag is important. Yes, last match semantics
are sometimes slightly weird—but they work. The line filtering on 2000::/3

must be replaced on a router with some more specific rules that match known
address prefixes to their proper interfaces. Again, these are mostly necessary
only if we want to allow untrusted nodes to connect to us.

/etc/pf.conf

block in inet6 from {$localnets} to fe80::/10 tag GOODDST

block in inet6 from any to fc00::/7 tag GOODDST

block in inet6 from any to 2000::/3 tag GOODDST

block in inet6 from {(lo0) $ifs} to ff01::/16 tag GOODDST

block in inet6 from {(lo0) $ifs} to ff11::/16 tag GOODDST

block in inet6 from {$localnets} to ff02::/16 tag GOODDST

block in inet6 from {$localnets} to ff12::/16 tag GOODDST

block in quick inet6 all ! tagged GOODDST

Block anycast source addresses (currently infeasible)

These rules filter illegal destinations. Yet again, they are mostly necessary
only if we want to allow untrusted nodes to connect to us.

62 4 Address Configuration

/etc/pf.conf

Rules to open certain TCP or UDP ports go here.

block return-icmp6(admin-unr) quick inet6 proto tcp all

block return-icmp6(admin-unr) quick inet6 proto udp all

For now we block all TCP and UDP traffic. Later on we put additional rules
before these.

/etc/pf.conf

pass quick inet6 proto icmp6 from {$localnets ::} \

to {$localnets ff02::1:ff00:0/104} \

icmp6-type neighbrsol

pass quick inet6 proto icmp6 from {$localnets} to {$localnets} \

icmp6-type neighbradv

We allow all neighbor discovery on the directly attached subnets.

/etc/pf.conf

pass quick inet6 proto icmp6 from {$localnets} to any \

icmp6-type groupqry

pass quick inet6 proto icmp6 from {$localnets} to any \

icmp6-type grouprep

pass quick inet6 proto icmp6 from {$localnets} to any \

icmp6-type groupterm

pass quick inet6 proto icmp6 from {$localnets} to any \

icmp6-type 143

We also need to allow multicast listener discovery at least when we are in a
switched network or want to use multicast routing.

/etc/pf.conf

pass quick inet6 proto icmp6 from {$localnets} \

to {$localnets ff02::2} \

icmp6-type routersol

pass quick inet6 proto icmp6 from {$localnets} \

to {$localnets ff02::1} \

icmp6-type routeradv

Router discovery can be controlled more precisely if we distinguish between
routers and hosts. If you want, add an in modifier to the first and an out

modifier to the last line for a router or the other way around on a host.

/etc/pf.conf

pass quick inet6 proto icmp6 all icmp6-type echoreq keep state

pass quick inet6 proto icmp6 all icmp6-type echoreq

pass quick inet6 proto icmp6 all icmp6-type echorep

If we only want to allow ping between unicast addresses, then the first line
takes care of everything: Each echo request creates a state that lets the sub-
sequent echo reply pass.

4.7 Packet Filter Considerations 63

If we also want to ping multicast addresses like ff02::1 or ff02::2 to see
which nodes are currently up and running, then the stateful filter is reaching
its limits and we need to filter the packets in a stateless manner. This is also
the reason why we can’t filter neighbor or router discovery using connection
tracking.

/etc/pf.conf

block return-icmp6(admin-unr) quick inet6 proto icmp6 all

For now we block all other ICMPv6 traffic.

/etc/pf.conf

block return log all

Normally, all packets should hit a matching quick rule before they ever get
here. But still, a restrictive catch-all rule at the end is always a good idea.

28

4.7.6 Testing the Filter Configuration

Checking a packet filter configuration is generally difficult; it is easy to deal
with a missing or overly restrictive configuration because whatever we want to
do doesn’t work, but there is no reliable way to check that a filter configuration
isn’t too permissive.

Nevertheless, to check that all necessary functionalities are working it helps
to use a systematic approach. The following checklist assumes that we have
a second node running a packet sniffer in the same subnet, so we can ensure
correct behaviour. If the network we sniff is heavily loaded with traffic, then
we may need to set filtering rules in the sniffer accordingly; while this intro-
duces another possible source of error it may be our only choice to find the
traffic we are actually looking for.

� Reboot the filter node. On the packet sniffer, watch for duplicate
address detection packets and neighbor discovery packets for the all-
node link-local multicast address as well as the solicited-node multicast
address of the filter node.

� Stop the filter node again. Configure the second node with the same
address as the filter node. Reboot the filter node. The duplicate ad-
dress detection must mark the address as unavailable.

� Now disable the address on the second node again and reboot the filter
node. When the filter node is up again and has its address configured,
add the same address to the second node. The duplicate address de-
tection must now block the address on the second node. Remove the
address on the second node again.

� Check that neighbor solicitation works: Try to ping the second node
in the same subnet. The neighbor discovery packets must be visisble

64 4 Address Configuration

and the neighbor discovery cache on the sending machine must show
an entry for the target machine.

� Try to telnet to a closed port on the remote machine. A “connection
refused” error must be returned.

� If ping packets are allowed, try to ping between the two machines.

5

IPv6 and the Domain Name System (DNS)

Since IPv6 addresses are slightly longer and more cumbersome to type than
IPv4 addresses, the next topic to tackle is the domain name system. While
this is not exactly the most exciting aspect of IPv6, it will free our hands from
typing in IPv6 addresses all the time.

5.1 Getting Started

Before we actually store IPv6 addresses in the DNS we first sort out three
fundamental things: We devise a naming standard that lets us use both IPv4
and IPv6 addresses with the least necessary hassle, we set up another test
environment and we see how we can avoid using the DNS altogether by storing
the addresses in /etc/hosts instead.

5.1.1 Naming Conventions

There are multiple established naming standards. Consider our archetypical
webserver www.example.com. We may add DNS records to its IPv6 addresses
like this:

www.example.com It is possible to have both IPv4 and IPv6 addresses as-
signed to a single DNS name. This is essential when a machine must be
accessible to users who shouldn’t notice if they use IPv4 or IPv6.
The drawback is that it makes it likely to bark up the wrong tree IP-wise:
Especially when you start working with IPv6 it is quite likely that you are
occasionally trying to solve an IPv4 problem by fixing IPv6 or vice versa.

www6.example.com So from a system administrator’s point of view it is often
more convenient to assign different names to IPv6 addresses. The easiest
way to do so is by appending a “6” to the unqualified name.
This approach has the advantage that the names stay fairly short and are
easily typed. The main disadvantage is that we need to keep IPv4 and

66 5 IPv6 and the Domain Name System (DNS)

IPv6 addresses in the same DNS zone. Additionally, a DNS name like
route66.example.com doesn’t lend itself easily to this strategy.

www.ip6.example.com With a dedicated subdomain like ip6.example.com

it is possible to manage all IPv6 addresses in their own DNS zone, effec-
tively decoupling them entirely from the IPv4 world.

The important thing to remember here is that you can assign multiple names
to an address as well as multiple addresses to a single name. My per-
sonal favourite strategy, again for the example webserver www.example.com

with the single legacy IPv4 address 192.0.2.80, the routed IPv6 addresses
2001:db8:fedc:abcd:80::80 and 2001:db8:fedc:cdef:80::80 plus the
link-local address fe80::222:33ff:fe44:5566 looks like this:

192.0.2.80

www.example.com → 2001:db8:fedc:abcd:80::80

2001:db8:fedc:cdef:80::80

www.ip4.example.com → 192.0.2.80

2001:db8:fedc:abcd:80::80
www.ip6.example.com →

2001:db8:fedc:cdef:80::80

192.0.2.80 → www.ip4.example.com

2001:db8:fedc:abcd:80::80 → www.ip6.example.com

2001:db8:fedc:cdef:80::80 → www.ip6.example.com

fe80::222:33ff:fe44:5566 → www.ip6ll.example.com

This turns out to be very useful: We and our users can use the short name if
we don’t want to worry about the IP version we are currently using. We can
also use the long names if we want to use a specific IP version. And a reverse
lookup will always yield us a name that includes the IP version, even when
we look up the link-local address.

There are however two potential drawbacks: This approach may break
some old, badly written programs that do a reverse DNS lookup for “secu-
rity purposes” and it may confuse ordinary users if they ever see a reverse
lookup name saying www.ip6.example.com if they actually tried to connect
to www.example.com.

5.1.2 The DNS Test Setup

Throughout this chapter we use the test setup shown in figure 5.1. The
DNS server we build in section 5.2 gets statically configured IPv6 addresses
with an interface ID ::1. For starters, the clients will have statically
configured addresses with the two prefixes 2001:db8:fedc:abcd::/64 and
2001:db8:fedc:cdef::/64 and the interface IDs ::11, ::22, . . . instead of
autoconfigured addresses.

5.1 Getting Started 67

::1 ::2 ::3 ::11 ::22 ::33

2001:db8:fedc:{abcd|cdef}::/64

dns1
(Debian)

dns2
(FBSD)

dns3
(Solaris)

deb
(Debian)

fbsd
(FBSD)

sol
(Solaris)

Fig. 5.1. The name system test setup

5.1.3 Local Address Management with /etc/hosts

To avoid all the trouble that the DNS introduces, it is sometimes sufficient to
maintain the host names and addresses on all machines locally.

Just to see how IPv4 and IPv6 work in parallel, we also configure IPv4
addresses from the 192.0.2.0/24 subnet on the clients, using the last byte
of the interface ID as the IPv4 host part.

Following the example from the previous section we can add the necessary
data to /etc/hosts like this:

/etc/hosts

IPv4 addresses

################

192.0.2.11 deb.ip4.example.com deb.example.com deb

192.0.2.22 fbsd.ip4.example.com fbsd.example.com fbsd

192.0.2.33 sol.ip4.example.com sol.example.com sol

IPv6 addresses

################

2001:db8:fedc:cdef::11 deb.ip6.example.com deb.example.com deb

2001:db8:fedc:abcd::11 deb.ip6.example.com deb.example.com deb

fe80::20c:29ff:fe73:bb02 deb.ip6ll.example.com

2001:db8:fedc:cdef::22 fbsd.ip6.example.com fbsd.example.com fbsd

2001:db8:fedc:abcd::22 fbsd.ip6.example.com fbsd.example.com fbsd

fe80::20c:29ff:fe72:5d4c fbsd.ip6ll.example.com

2001:db8:fedc:cdef::33 sol.ip6.example.com sol.example.com sol

2001:db8:fedc:abcd::33 sol.ip6.example.com sol.example.com sol

fe80::20c:29ff:fe03:8582 sol.ip6ll.example.com

Solaris 10 Different than Debian and FreeBSD, Solaris expects IP addresses
to be placed in /etc/inet/ipnodes; only IPv4 addresses may also be kept in
/etc/inet/hosts, to which /etc/hosts is symlinked.

68 5 IPv6 and the Domain Name System (DNS)

According to the ipnodes(4) man page in this case the entries should be
copied to /etc/inet/ipnodes as well—which proves not to work: If you try
to telnet or ssh (see below) to another machine which has both IPv4 and IPv6
addresses listed in /etc/inet/ipnodes, it apparently tries only the addresses
belonging to the first IP version listed for the name.

If however you keep IPv4 addresses in /etc/inet/hosts and IPv6 ad-
dresses in /etc/inet/ipnodes, telnet and ssh will try all addresses they
find. 29

We can test with telnet if this works: If the remote side doesn’t run a
telnet server, the client should attempt to use all listed addresses, returning
an error notice on every address. The options -4 and -6 explicitly force the
client to use IPv4 and IPv6, respectively.

Debian Sarge Without the -6 option the telnet client will only try the first
IPv6 address listed, not all of them.

Solaris 10 The telnet client has no -4 and -6 options. As a substitute ssh

with the -v option and -4 or -6 can be used. 30

� Test if telnet works with the -4 flag. If the remote machine is up and
doesn’t run a telnet server, the “connection refused” error messages
list the IPv4 addresses.

� Test again with the -6 flag. Now all and only the IPv6 addresses must
be listed.

� Finally, try again without a -4 or -6 flag. This tries all addresses
independent of the IP version (but see above for Debian).

� Depending on the particular Unix, traceroute6 and/or ping6 often
do a reverse lookup on the addresses they receive replies from. This
helps to verify that resolving addresses into names works as expected.

Debian Sarge Both ping6 and traceroute6 do a reverse lookup.

FreeBSD 6.1 Only traceroute6 does a reverse lookup by default; ping6
supports an extra option -H to force a reverse lookup.

Solaris 10 The ping command does a reverse lookup if the option -s is
used to provide for a continuous output. The traceroute command doesn’t
do reverse lookups for IPv6 addresses. 31

In a small network, maintaining an /etc/hosts file and distributing it
using tools like scp or rsync/ssh may well be sufficient for a start. Even
in larger, production-grade environments it may be useful to maintain the
addresses of key servers this way on all the machines in our network just in
case.

5.2 IPv6 Addresses in the DNS

IPv6 and the DNS interact with each other in two entirely independent ways.
A client that needs to resolve a DNS name into an IP address (or vice versa)

5.2 IPv6 Addresses in the DNS 69

needs to talk to a DNS server, possibly using IPv6 as the underlying protocol
and a client may ask the server to resolve a DNS name into an IPv6 address
(or vice versa). Both aspects are entirely unrelated.

The canonical DNS implementation in the Unix world is called BIND. It
has a number of drawbacks, but so far no alternative has become anywhere
near as popular. If you are still unfamiliar with it, see appendix A for an
introduction before you read on.

5.2.1 Resolver Configuration

Before we set up a name server we need to configure the resolver library on
both the clients as well as the servers. First we tell them to use the DNS.

Debian Sarge, FreeBSD 6.1 An entry

/etc/nsswitch.conf

hosts: files dns

in /etc/nsswitch.conf makes the resolver first look in the local /etc/hosts
file and then ask the name server.

Solaris 10 Similarly, two entries

/etc/nsswitch.conf

ipnodes: files dns

hosts: files dns

in /etc/nsswitch.conf tell the Solaris resolver to search /etc/inet/ipnodes

and /etc/inet/hosts first and then to ask the name server for IPv6 and IPv4
addresses, respectively. 32

Next we tell the resolver where to look for the DNS server and what
default domain to use. For a change, this configuration doesn’t differ be-
tween the Unixen shown here; we just add our name server address(es) in
/etc/resolv.conf like this:

/etc/resolv.conf

domain example.com.

nameserver 2001:db8:fedc:abcd::1

nameserver 2001:db8:fedc:cdef::1

nameserver 192.0.2.1

The last line obviously only makes sense if the particular node is dual-stacked
and can reach the IPv4 name server.

At this point it is already possible to test the client configuration.

� Start a packet sniffer in the network and make it trace DNS traffic
(UDP port 53). This requires that the configured name servers are
available on the net and answer neighbor solicitations. They don’t
need to answer the DNS requests at this point.

70 5 IPv6 and the Domain Name System (DNS)

� Make the client look for hostnames and/or addresses not locally con-
figured in /etc/hosts and such.

� Check the packet sniffer for matching DNS traffic.

5.2.2 Enabling IPv6 on the DNS Server

Next we need a DNS server. It needs to be reachable at a fixed IP address,
so we either configure an existing name server as a statically configured IPv6
host or we set up a new machine accordingly.

With an existing name server the next step is to check that it runs a
reasonably recent version of BIND; version 9.2.3 and up should be fine while
older versions will cause problems with reverse lookups; see the warning on
page 74. Appendix A.2.1 explains how to install a recent BIND version.

Next we need to make our name server listen on an IPv6 socket. With
existing servers, we mostly need to add a listen-on-v6 statement to the
options section in named.conf:

named.conf

options {

[. . .]
listen-on-v6 { any; };

allow-query { "any"; };

[. . .]
};

The allow-query statement is not always necessary, but if it already exists
and restricts which addresses may query the name server, then it may need
to be updated. Depending on the version of BIND it may be possible to
restrict the server to listen on a specific address only, but for our purposes
it suffices to allow IPv6 queries on all interfaces. Instead of any we may
however list network prefixes or such here to restrict access to the name server.
This is especially important with BIND versions at least up to version 9.2.4,
where listen-on-v6 doesn’t allow us to restrict the name server to individual
addresses like at least version 9.3.1 does.

5.2.3 Forwarder Configuration vs. a Fake Root Zone

If we want to use the name server as a forwarder, we need to configure the
name server accordingly. As with IPv4, this only takes a statement

named.conf

options {

[. . .]
forwarders { 192.0.2.1; 2001:db8:fedc::1; };

[. . .]
};

5.2 IPv6 Addresses in the DNS 71

in the options section of named.conf. IPv4 and IPv6 addresses can be freely
mixed here. If the name server is dual-stacked, it will happily accept DNS
queries via IPv6 and forward them to its forwarder via IPv4 and vice versa.
If it is not dual-stacked, we must make sure that both servers can reach each
other using the same IP version.

Alternatively, we can configure the list of root servers in our name server.
Since these are currently all IPv4-only, there are no configuration changes due
to IPv6.

If we run in a disconnected environment however, we will want to configure
a fake root zone. This will ensure that all queries that can’t be resolved will
immediately be answered with a negative reply; otherwise the resolver library
may wait for a timeout, causing considerable delay. The next section explains
how to do this together with setting up an “ordinary” forward zone.

5.2.4 Forward Zones on a Primary Server

Next we add data to our DNS server to map domain names into IPv6 ad-
dresses. Both IPv4 and IPv6 addresses are stored in the same zone. As-
suming that we have a zone “example.com.” with its zone data kept in
example.com.fwd, we just add more resource records to it.

The top of the zone file may look somewhat like this:

example.com.fwd

$TTL 3600

@ SOA dns1.example.com. root.dns1.example.com. (1 15m 5m 30d 1h)

NS dns1.example.com.

NS dns2.example.com.

NS dns3.example.com.

localhost A 127.0.0.1

AAAA ::1

The last line is new and the most interesting one here. It shows that it is
perfectly reasonable to have both IPv4 and IPv6 address records for a given
name. IPv6 addresses are kept in AAAA or “quad A” records that look just
like the familiar A records used for IPv4.

While it isn’t strictly necessary to have a localhost entry, it sometimes
speeds up the lookups for an unqualified localhost name, so adding it here
is good practice.

If we don’t have a forwarder configuration and want to set up a fake root
zone, we must copy the lines so far to another file root.fwd in the same
directory as example.com.fwd.

The only thing missing are the actual DNS data for our six machines. So
we add them to the zone file like this:

72 5 IPv6 and the Domain Name System (DNS)

example.com.fwd

dns1 AAAA 2001:db8:fedc:abcd::1

AAAA 2001:db8:fedc:cdef::1

dns1.ip6 AAAA 2001:db8:fedc:abcd::1

AAAA 2001:db8:fedc:cdef::1

dns2 AAAA 2001:db8:fedc:abcd::2

AAAA 2001:db8:fedc:cdef::2

dns2.ip6 AAAA 2001:db8:fedc:abcd::2

AAAA 2001:db8:fedc:cdef::2

dns3 AAAA 2001:db8:fedc:abcd::3

AAAA 2001:db8:fedc:cdef::3

dns3.ip6 AAAA 2001:db8:fedc:abcd::3

AAAA 2001:db8:fedc:cdef::3

deb AAAA 2001:db8:fedc:abcd::11

AAAA 2001:db8:fedc:cdef::11

deb.ip6 AAAA 2001:db8:fedc:abcd::11

AAAA 2001:db8:fedc:cdef::11

fbsd AAAA 2001:db8:fedc:abcd::22

AAAA 2001:db8:fedc:cdef::22

fbsd.ip6 AAAA 2001:db8:fedc:abcd::22

AAAA 2001:db8:fedc:cdef::22

sol AAAA 2001:db8:fedc:abcd::33

AAAA 2001:db8:fedc:cdef::33

sol.ip6 AAAA 2001:db8:fedc:abcd::33

AAAA 2001:db8:fedc:cdef::33

[. . .]

If we don’t have a forwarder configuration and want to use a fake root
zone, we add

named.conf

zone "." { type master; file "root.fwd"; };

to our named.conf. Finally, we make the named reload its configuration or
reboot the system.

At this point it is a good idea to ensure that everything works as expected:

� Check the system log files for suspicious lines containing the string
“named”.

� Use ps to see if the named is running.
� Use netstat -a to see if named is listening on IPv6.
� Check that the name dns1.example.com is resolved correctly:

dig @::1 dns1.example.com. ANY

If you don’t use the ANY or AAAA query type option, dig will only look
for IPv4 addresses. With ANY it will search for both IPv4 and IPv6
addresses, with AAAA only for IPv6 addresses.

5.2 IPv6 Addresses in the DNS 73

� Ask the name server for the entire “example.com.” zone with

dig @::1 example.com. AXFR

and check that the data is correct. If this doesn’t work, make sure you
are allowed to do a zone transfer from ::1.

� Check that forwarding or your fake root zone works with

dig @::1 . ANY

to retrieve the root zone data that the name server uses.

5.2.5 Reverse Zones on a Primary Server

Now we need to add reverse zones to resolve IPv6 addresses into their corre-
sponding DNS names. Unlike the forward records, reverse records for IPv4
and IPv6 are kept in separate zones. More important, the notation, called
nibble format, is distinctly ugly, tedious and error-prone.

The domain name notation of the IPv6 address 2001:db8:fedc:abcd::1
looks like this:

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.d.c.b.a.c.d.e.f.8.b.d.0.1.0.0.2.ip6.arpa.

Note the reduced font size to fit it onto the page. To make these addresses
remotely manageable in a zone file, two tricks are extremely helpful. The zone
file for our network prefix 2001:db8:fedc::/48 shows them:

2001.db8.fedc.rev

$TTL 3600

@ SOA dns1.example.com. root.dns1.example.com. (1 15m 5m 30d 1h)

NS dns1.example.com.

NS dns2.example.com.

NS dns3.example.com.

; 1 1 1 1 1 1 1

; 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

$ORIGIN d.c.b.a.c.d.e.f.8.b.d.0.1.0.0.2.ip6.arpa.

; 1 1 1 1 1 1 1

; 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR dns1.ip6.example.com.

2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR dns2.ip6.example.com.

3.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR dns3.ip6.example.com.

1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR deb.ip6.example.com.

2.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR fbsd.ip6.example.com.

3.3.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR sol.ip6.example.com.

[Continued on next page]

74 5 IPv6 and the Domain Name System (DNS)

2001.db8.fedc.rev

[Continued from previous page]
$ORIGIN f.e.d.c.c.d.e.f.8.b.d.0.1.0.0.2.ip6.arpa.

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR dns1.ip6.example.com.

2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR dns2.ip6.example.com.

3.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR dns3.ip6.example.com.

1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR deb.ip6.example.com.

2.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR fbsd.ip6.example.com.

3.3.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR sol.ip6.example.com.

[. . .]

Using a comment “ruler” to keep track of the number of nibbles is probably
the only way to reduce the number of cases with the wrong number of nibbles
to a reasonable level. The $ORIGIN statement is also essential; it defines the
“origin”, the domain name suffix to append to all unqualified names. Using
it properly, like in the example, trims the lines of the zone file to a TTY-
compatible width.

Alternatively, Peter Bieringer’s ipv6calc generates fully qualified domain
name representations of IPv6 addresses if we run it as

ipv6calc 2001:db8:fedc:abcd::1 --out revnibbles.arpa

ipv6calc 2001:db8:fedc:abcd::1 --out revnibbles.int

for an address 2001:db8:fedc:abcd::1.
We make the name server serve the zone from this file by adding

named.conf

zone "c.d.e.f.8.b.d.0.1.0.0.2.ip6.arpa." {

type master;

file "2001.db8.fedc.rev";

};

to our named.conf. Finally, we make the name server reload its configuration.
To test it, we proceed as with the forward zones. The dig command

has an option -x that makes it convert the following IP address into the
corresponding domain name:

% dig @::1 -x 2001:db8:fedc:abcd::1 PTR

This tends to make it far easier to query IPv6 addresses.

If you use a dig version from a BIND release prior to 9.2.3,
this will fail because dig will try to look up the address
in a different (now deprecated) “bitlabel format”. See sec-
tion 5.2.8 for an explanation.

It is possible to delegate subzones at arbitrary nibble boundaries, but ex-
cept for large networks that shouldn’t be necessary. If you delegate subzones,
try to keep all of them at the same nibble boundary to avoid unnecessary
confusion.

5.2 IPv6 Addresses in the DNS 75

5.2.6 Secondary Servers

Setting up secondary name servers is no particular problem. The masters

statement in a zone clause supports IPv6 as well as IPv4 addresses. To the
DNS, IPv6 reverse zones are just zones like all others, so they can be replicated
like any other zone.

The only thing to watch out for is that the primary and secondary name
servers must be able to talk to each other; if one only supports IPv4 and the
other only supports IPv6 this won’t work.

5.2.7 Testing and Debugging

At this point it is advisable to ensure that the name server is working as
expected.

� Check with ps that a named process is running.
� With netstat -a check that it listens on IPv6 for incoming requests.
� Using dig, do a zone transfer on all zones you created. Make sure

there are no missing trailing dots. In reverse zones, ensure that the
number of nibbles is correct—BIND will consider domain names with
the wrong number of nibbles perfectly reasonable but the resolver won’t
find them.

� If you have any secondary servers, make sure they return the same data
as the primary.

� Again, use dig to test individual names.
� Yet again, use dig with the -x option to test the reverse resolution of

addresses.

Finally, we can check if the resolver library on all nodes can successfully
query the DNS servers.

� On all nodes, including any client, remove all entries from /etc/hosts

that contain data you want to obtain from the DNS.
� Check that all nodes can use the DNS names, using ping or telnet or

similar to test the resolver library.
� Check the log files for any suspicious lines containing the string

“named”.

5.2.8 Annoying Legacies

As if the DNS wasn’t already messy enough, there are some additional historic
problems. While up-to-date Unixen won’t be affected by these you may run
into them either with older releases or with books that are a few years old.

Originally, IPv6 addresses in forward records used the AAAA record type
that we’ve already seen and which was introduced in RFC 1886 [108]. In

76 5 IPv6 and the Domain Name System (DNS)

RFC 2874 [21] AAAA records were replaced by A6 records, which provide an ad-
ditional feature to copy an address prefix from another forward name, so pre-
fixes could be changed by updating a single resource record. In RFC 3363 [13]
the IETF realized that this allows lookup loops and makes it difficult to define
a reasonable timeout for DNS queries. So in RFC 3596 [109] the A6 record
type was declared “experimental” again and AAAA records were restored as
the official record type for IPv6 addresses.

To my knowledge A6 records have never been used with any resolver library.
They are however supported with BIND, so if you really want to be sure that
a resolver using them will work, add A6 records according to the pattern

example.com.fwd

www.example.com. AAAA 2001:db8:fedc:cdef::80

A6 0 2001:db8:fedc:cdef::80

to your forward zones. Note the additional “0” attribute in the A6 record.

With reverse records the situation is even worse. Originally, as of
RFC 1886 again, the nibble format we’ve seen was used but within the
“ip6.int.” pseudo-domain. Then in RFC 2672 [19] and RFC 2673 [18]
the so-called bitstring format or bitlabel format was introduced together with
the DNAME record type. Again, the intention was to simplify DNS reconfigura-
tion when a network was renumbered. To make things even worse, bitstring
records were kept in the “ip6.arpa.” pseudo-domain. But the same prob-
lems as with A6 records caused another change in standards. In RFC 3363 the
problem was analyzed and in RFC 3596 it was finally decided to switch back
to the nibble format—but to stick with the “ip6.arpa.” pseudo-domain.

Unfortunately, support for all three formats may actually be necessary:
The original nibble format in “ip6.int.” is still used by some older resolvers;
additionally, some up-to-date resolvers first look in “ip6.arpa.” and if that
fails they also check “ip6.int.”, so don’t be surprised if you see this in a
packet sniffer. BIND versions up to 9.2.2 came with a dig that used the
bitstring format if you used the -x option. Only in 9.2.3, which claimed to be
a “maintenance release” without new or modified features, this was silently
changed so dig used the nibble format with “ip6.arpa.”.

So if you use some older Unix releases with IPv6, first clone your reverse
zone data to the old “ip6.int.” pseudo-domain. If you also want the bit-
string format, first add another zone to your named.conf:

named.conf

zone "\[x20010db8fedc/48].ip6.arpa." {

type master;

file "2001.db8.fedc.bitstring";

};

Then create the zone file holding the data. While the SOA and NS records
don’t change, the PTR records look different than before:

5.4 Packet Filter Considerations 77

2001.db8.fedc.bitstring

[. . .]
; 11111111112

; 12345678901234567890

\[xabcd0000000000000001/80] PTR dns1.example.com.

With the bitstring format address parts are written as a hexadecimal number
and a decimal number specifying the number of bits. They start with a “\[x”
followed by the hexadecimal number, a slash, the number of relevant bits in
decimal and a “]” (without a preceding backslash). Using two bitstrings in the
zone name or an $ORIGIN statement and as an unqualified name concatenates
them.

5.3 Open Issues

At this point the DNS service is functional and relieves us from entering IPv6
addresses. But two issues remain unresolved:

• With IPv4 and DHCP, not only address configurations are distributed but
the addresses of important servers, most notably for DNS and the network
time protocol (NTP). At this point we still need to configure these by hand
on all machines in our network. Chapter 19 explains how to provide the
information using a simplified DHCP protocol.

• While stateless autoconfiguration is a very powerful mechanism, it lacks
an essential feature: It doesn’t update the DNS like a DHCP server does.
While this problem is still not fully understood, at least some partial
solutions exist to simplify DNS administration. They are the subject of
chapter 20.

These issues are a nuisance rather than a pressing fundamental problem that
we need to address right away, so we defer them for a while.

5.4 Packet Filter Considerations

Packet filtering interacts with the DNS in two independent ways: It controls
which machines may query which name server and it possibly uses DNS names
in its own configuration. Both of these interactions deserve some considera-
tion.

5.4.1 Filter Rules

As with IPv4, DNS uses UDP port 53 for normal lookups. Depending on
the DNS implementation, datagrams may be limited to 512 bytes. DNS will
automatically fall back to TCP on port 53 if a DNS message gets too large to

78 5 IPv6 and the Domain Name System (DNS)

fit inside a datagram. As a special case, zone transfers are always done using
TCP.

With IPv4 it is common (though questionable) practice to allow only UDP
queries through a packet filter. With IPv6, this becomes a problem for two
reasons: The IPv6 addresses make the individual resource records larger and
there is a tendency to have more DNS records per domain name. In many
cases 512 bytes are still more than enough, but if we run an authoritative
name server we should either allow TCP or make sure that all our resource
record sets are small enough to fit in a UDP datagram. A forwarding server
as well as a client should admit both UDP and TCP on port 53.

Otherwise, the packet filter configuration is quite simple and shouldn’t
pose any problems. From a packet filter’s perspective, DNS is just another
application protocol running on port 53. If you don’t feel comfortable adding
filter rules for DNS, take a peek at section 6.11. It includes DNS along with
various other services.

5.4.2 DNS Names in Filter Configurations

Writing packet filter configurations that contain rules for individual nodes
leads to a common dilemma: Should we put the address or the name of
the individual host into the configuration? Neither approach is without its
problems.

Using addresses in the configuration makes it necessary to maintain the
addresses of the nodes inside the filter configuration. If an address changes
and only the DNS is updated, the filter rules break, possibly resulting in a
security hole.

Using “true” DNS names in a packet filter is extremely dangerous since
DNS isn’t particularly secure. In some cases it is feasible to use either macro
definitions at the beginning of the filter configuration or make the packet filter
only use /etc/hosts for its name resolution and put the addresses of the nodes
involved there; either approach will noticeably simplify filter configuration.
We might even set up DNSSEC to secure our DNS communications.

But with IPv6, nodes tend to change their addresses more often than with
IPv4. Packet filters today don’t deal with this too gracefully: They usually
do a name lookup only when a filter rule is first installed and afterwards never
check if the address changes.

There is no easy catch-all solution to this problem. But if we set up a
packet filter on a node just to protect the node itself, we may use the features
of the particular filter to decide if a packet is for the node itself or not.

Debian Sarge The ip6tables framework distinguishes packets that are
sent to the filtering node itself and those that are meant to be forwarded.

FreeBSD 6.1 With pf we can use interface names instead of addresses to
select packets to be delivered locally. 33

5.4 Packet Filter Considerations 79

Packet filters on routers don’t have this option. If we want to keep things
reasonably simple, our best bet is a network topology that puts nodes with
different security requirements in separate subnets, so routers can filter by
interface or subnet. If we can’t impose such a topology on an existing net-
work, then we have little choice but to track individual addresses in our filter
configurations.

6

Essential Network Services

Even with the DNS up and running a number of essential services are still
missing. Before we return to IPv6 proper and set up routing, we make our-
selves more comfortable by enabling some services that are commonly used
for system administration purposes.

You will notice that this chapter doesn’t explain in detail how to install,
configure and run the various services. It tells you which packages you need
but assumes that you know about the services you want to use and only
explains their IPv6 specifics.

6.1 Levels of IPv6 Support

There are basically five different levels of IPv6 support with individual pro-
grams:

Distribution level The software as distributed with the operating system
(including the BSD ports collection, Solaris “companion CD” and similar)
supports IPv6. It works out of the box.

Current source level The current source version available supports IPv6;
we need to get the sources, build the software and install it by hand.

Current patch kit level A patch for the current source version exists to
add IPv6 support.

Outdated patch kit level For an outdated source version a patch set is
available.

No IPv6 support At least we could try to add IPv6 support ourselves. . .

This chapter focuses on the distribution level support. Only in one case
will it point out source level support for essential software that isn’t generally
available from the distribution. Generally, source level support is acceptable
but tedious especially if we want the particular packaging system to support
these programs.

82 6 Essential Network Services

Patch sets are generally not a solution—not even current ones. If a security
problem becomes known and the main source tree is updated, the patch may
break. In this situation we have a choice of either disabling the software or
running an insecure, outdated version until an updated patch set becomes
available. Neither choice is acceptable in a production setup.

Adding IPv6 support to existing code isn’t impossible but can be tedious,
especially if the original source code is badly written or maintained only in
an ad-hoc style.

6.2 The Inetd Super Daemon

The Inetd family of “super daemons”, most notably plain inetd and its next-
generation equivalent xinetd, listens on a configured set of ports, accepts
incoming connections and then hands the already established connections to
the appropriate “real” servers.

Since Inetd passes already established sockets to the “real” servers, some
simple services will automatically support IPv6 when they are started this
way. As long as they don’t try to do anything IPv4-specific to the socket, like
asking for the IPv4 address of the client, they won’t even notice that they
serve an IPv6 connection.

It is not so much the importance of Inetd as a service that makes us
address it as the very first service in this chapter. But in the following section
we take a look at some basic network administration tools and there is no
better service than Inetd to test them with.

Whether or not the Inetd installed on a system already supports IPv6
depends on the particular Unix as usual.

Debian Sarge The standard inetd installed from the netkit-inetd pack-
age doesn’t support IPv6. We can replace it with either inetutils-inetd,
which behaves just like inetd but doesn’t bring any IPv6-related documen-
tation, or with xinetd, which uses a different configuration file syntax.

FreeBSD 6.1 The inetd from the core distribution supports IPv6.

Solaris 10 With Solaris 10 the inetd has been incorporated into the ser-
vice management facility (smf) framework. It is part of a core installation.
For testing purposes the SUNWcnsr and SUNWcnsu packages contain the echo

service we use to see how to deal with the IPv6 support. 34

The simple echo service is most commonly used to test the Inetd confi-
guration. It is usually implemented internally within Inetd (with the notable
exception of Solaris 10) and is available with both TCP and UDP. Depending
on the Inetd implementation we use the configuration differs widely:

6.2 The Inetd Super Daemon 83

Debian Sarge, FreeBSD 6.1 with standard inetd The inetd configu-
ration in /etc/inetd.conf consists of a single line per service. The impor-
tant part is the third column, specifying the protocol to use. Traditionally it
contains either tcp or udp to specify TCP or UDP sockets.

With the arrival of IPv6 the various implementations have seriously di-
verged with respect to this column. The table below shows the available
protocols depending on the Unix.

IPv4 only IPv6 only IPv4 and IPv6
Debian Sarge tcp4, udp4 tcp6, udp6 tcp, udp
FreeBSD 6.1 tcp,tcp4, udp,udp4 tcp6, udp6 tcp46, udp46

Most annoyingly, tcp and udp have different meanings on different imple-
mentations. Without general support for tcp46 and udp46 there is no way to
configure the inetd daemon in an implementation-independent manner. To
enable the echo service for both TCP and UDP over IPv6 only we need to
change the appropriate lines in /etc/inetd.conf to read

/etc/inetd.conf

echo stream tcp6 nowait root internal

echo dgram udp6 nowait root internal

At least with IPv6 the configuration syntax is consistent between implemen-
tations.

Debian Sarge with xinetd If we want to use xinetd rather than inetd

we need to change the configuration in /etc/xinetd.d/echo like this:

/etc/xinetd.d/echo

default: off

description: An xinetd internal service which

echo’s characters back to clients.

This is the tcp version.

service echo

{

disable = no ‖ Set this!
type = INTERNAL

id = echo-stream

socket_type = stream

protocol = tcp

user = root

wait = no

flags = IPv6 ‖ Set this!
}

[Continued on next page]

84 6 Essential Network Services

/etc/xinetd.d/echo

[Continued from previous page]
This is the udp version!

service echo

{

disable = no ‖ Set this!
type = INTERNAL

id = echo-dgram

socket_type = dgram

protocol = udp

user = root

wait = yes

flags = IPv6 ‖ Set this!
}

On Debian Sarge the xinetd has an annoying limitation: Even though
there is another flag IPv4 it is not possible to enable a service for IPv6 only.
We may work around this using the bind statement, but doing so will cause
problems when a network renumbering happens. Alternatively, we can use a
line

/etc/xinetd.d/echo

[. . .]
no_access = ::ffff:0:0/96

[. . .]

to block the address range that IPv4 addresses are mapped into; any incoming
connection will immediately close again—we’ll take a closer look at these
addresses in section 16.2. While this still isn’t a full replacement for the
Connection refused error a client will see if the service is entirely unavailable
to IPv4, in many cases this is close enough for all practical purposes. Finally,
we may block the port at the packet filter level instead. This involves a bit of
extra work but is probably the cleanest solution.

Solaris 10 Solaris installs the echo service as two smf-managed services
called svc:/network/echo:dgram and svc:/network/echo:stream. First
we look at the properties of the TCP-based echo:stream service:

inetadm -l echo:stream

SCOPE NAME=VALUE

name="echo"

endpoint_type="stream"

proto="tcp6" ‖ This is the important one
isrpc=FALSE

wait=FALSE

exec="/usr/lib/inet/in.echod -s"

user="root"

[Continued on next page]

6.2 The Inetd Super Daemon 85

[Continued from previous page]
default bind_addr=""

default bind_fail_max=-1

default bind_fail_interval=-1

default max_con_rate=-1

default max_copies=-1

default con_rate_offline=-1

default failrate_cnt=40

default failrate_interval=60

default inherit_env=TRUE

default tcp_trace=FALSE

default tcp_wrappers=FALSE

(Afterwards we can do the same for echo:dgram.) The important property
here is proto: it controls the protocol families that the service is made avail-
able to. The proto property may have one of these somewhat misleadingly
named values:

tcp, udp Only support IPv4.
tcp6, udp6 Support both IPv4 and IPv6.
tcp6only, udp6only Only support IPv6.

To set the property, we use the inetadm command like

inetadm -m echo:stream proto=tcp6only

inetadm -m echo:dgram proto=udp6only

and finally enable the service:

inetadm -e echo:dgram

inetadm -e echo:stream

After that we may want to check for the service:

inetadm

ENABLED STATE FMRI

[. . .]
enabled online svc:/network/echo:dgram

enabled online svc:/network/echo:stream

[. . .]
svcs -a

STATE STIME FMRI

[. . .]
online 22:38:04 svc:/network/echo:dgram

online 22:38:06 svc:/network/echo:stream

35

86 6 Essential Network Services

6.3 Basic Debugging—Tools and Procedures

With the echo service up and running we can now test some basic network
administration tools and procedures.

As a first step we use ps to see if the server process is actually running. On
System V derived Unixen it usually takes the argument -e to list all processes
while BSD derived ones use the argument x or similar.

The second step uses netstat to see if a server socket is open on the port
we desire. In all cases, netstat produces a list of all sockets—with widely
differing output formats and a range of non-standardized options to control
its output. The standard options -a to list all sockets and -n to suppress
name resolution are commonly supported but not IPv6-specific. In addition
we may use the IPv6-related but not generally standardized options listed in
table 6.1 to find the information we want.

Table 6.1. Non-standard options to netstat

-l Debian Sarge List only server sockets.
-A [inet|inet6] Debian Sarge Select the address family.
-f [inet|inet6] FreeBSD 6.1, Solaris 10 Select the address family.
-4 Debian Sarge Short for -A inet.
-6 Debian Sarge Short for -A inet6.

Debian Sarge The options -4 and -6 can be combined to list both IPv4
and IPv6 sockets together.

netstat -l -4 -6

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 localhost.localdom:smtp *:* LISTEN

tcp6 0 0 *:echo *:* LISTEN

udp6 0 0 *:echo *:*

Alternatively we can use the lsof command with the options -i -P -n:

lsof -i -P -n

COMMAND PID USER FD TYPE DEVICE SZ. NODE NAME

exim4 1946 Debian-exim 3u IPv4 3645 TCP 127.0.0.1:25 (LISTEN)

xinetd 2042 root 5u IPv6 4000 TCP *:7 (LISTEN)

xinetd 2042 root 6u IPv6 4001 UDP *:7 (LISTEN)

The Linux netstat and lsof commands both show an ugly and potentially
dangerous behaviour in certain cases: It is possible for a server to use IPv6
and to have incoming IPv4 connections mapped into the IPv6 address space
using so-called IPv4-mapped IPv6 addresses like ::ffff:127.0.0.1. A server
doing so should show such an open socket as listening on both IPv4 as well
as IPv6. All presented Unixen except Linux do so.

6.3 Basic Debugging—Tools and Procedures 87

But Linux does not. Especially for those of us using IPv4
only, this may well hide the fact that a server is actually
listening on IPv4 as well as IPv6 (where we might acciden-
tially ignore it, leaving us with an unnoticed open socket).

To make things worse, the netcat6 package contains a netcat reimple-
mentation that doesn’t support port scanning, so we can’t even use it for a
quick port scan as a workaround. If we have nmap installed we might consider
running

nmap 2001:db8:fedc:abcd::1 -p 1-65535

as a last resort.

FreeBSD 6.1 Besides the standard netstat command there is also a non-
standard sockstat command which has the great advantage that it doesn’t
truncate host names or addresses on display.

netstat -a -f inet6

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp46 0 0 *.echo *.* LISTEN

udp46 0 0 *.echo *.*

sockstat -l -4 -6

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS

root inetd 1390 4 tcp46 *:7 *:*

root inetd 1390 5 udp46 *:7 *:*

Solaris 10 The output of the Solaris 10 netstat command is distinctly un-
befitting a standard text console at 80 column width—it needs 111 characters
per line.

netstat -a -f inet6

UDP: IPv6

Local Address Remote Address State If

------------------ ------------------ ---------- -----

[. . .]
*.echo Idle

TCP: IPv6

Local Address Remote Address [. . .] State If

------------------ ------------------ [. . .] ----------- -----

[. . .]
*.echo *.* [. . .] LISTEN

[. . .]

36

Finally it is a good idea to test the server with a client. If there is a
matching client, it may have some “verbose mode” to give us more detailed
information about connecting to the server.

88 6 Essential Network Services

If no such client is available, we can use a “generic” client software, like
telnet or one of the various IPv6-enabled clones of netcat, to access a port
directly. All the Unixen shown here come with an IPv6-enabled telnet client;
we can just use an IPv6 address (or a DNS name resolving to an IPv6 address)
as the destination and the port number or service name we want.

The advantages of telnet are that it is generally available on all systems
and all implementations behave the same. Its disadvantages are that it only
supports TCP and that the “network virtual terminal” features may cause
unexpected effects.

Netcat on the other hand often needs to be installed on the particular
system. Its behaviour and feature set depend on what branch/rewrite we
have available. But it also supports UDP and in some cases features a simple
port scan to list all open ports.

Independent of the particular service a generic checklist looks like this:

� Check with ps that the server process is running.
� With netstat, ensure that a socket is open for the service.
� With either an application-specific client or telnet or an IPv6-enabled

Netcat manually connect to the service.
� Use a packet sniffer to analyze the network traffic in detail, especially

if you need to solve a problem or want to get a more detailed under-
standing of the service.

6.4 The Secure Shell (OpenSSH)

From a system administrator’s point of view, the most important network
service is probably the secure shell, usually the OpenSSH implementation. It
allows secure remote logins and file transfers to other machines using public
key cryptography.

In general, there is nothing special to the installation to make it support
IPv6; back in 2003 it was in some cases necessary to compile the OpenSSH
from sources (available from ftp://ftp.openssh.org/pub/OpenSSH/) to en-
sure that it supported IPv6, but IPv6 support in software has seriously im-
proved since:

Debian Sarge The ssh package contains an IPv6-enabled client and server.
The installation scripts ask interactively if we want to run the server.

FreeBSD 6.1 The OpenSSH is part of the core system and supports IPv6.
The server is enabled in /etc/rc.conf.

Solaris 10 The packages SUNWsshcu, SUNWsshdr, SUNWsshdu, SUNWsshr and
SUNWsshu contain the IPv6-enabled client and server. Once they are installed
we enable the service using svcadm. 37

6.5 Time Synchronization with the Network Time Protocol (NTP) 89

Next we may want to configure OpenSSH. We can use IPv6 addresses
with the ListenAddress option in /etc/ssh/sshd_config just like IPv4 ad-
dresses. If we don’t change the default configuration, then the sshd will listen
on both IPv4 and IPv6. (If you need to log in as root, don’t forget to set
PermitRootLogin in /etc/ssh/sshd_config.)

Next we ensure that the service is actually running.

� Check with ps that the sshd daemon is running.
� See if a socket is listening on the ssh port with IPv6. (Remember the

Linux problem with netstat.)
� Use ssh -v to connect to the server. The -v option provides detailed

information about the communication progress. The options -4 and
-6 explicitly request IPv4 and IPv6, respectively.

There is a minor oddity about scp. If we want to copy a file to another
machine, something like

scp /etc/shadow nobody@bad.example.com:/tmp

works perfectly fine. We won’t notice if IPv4 or IPv6 is used (and generally we
don’t want to care about this). But if we want to use an IPv6 address instead
of a DNS name, the colon between the address and the file path becomes
ambiguous. We need to specify the address in square brackets, like [::1].
Since square brackets are used as globbing metacharacters by most if not all
shells, we also need to quote them. So what we want to do looks like

scp /etc/shadow nobody@"[2001:db8:bad::bad:bad]":/tmp

scp /etc/shadow "nobody@[2001:db8:bad::bad:bad]:/tmp"

scp /etc/shadow ’nobody@[2001:db8:bad::bad:bad]’:/tmp

or similar. While this isn’t too surprising as long as we are aware of this,
almost everybody eventually gets some funny errors because of forgotten quote
characters.

6.5 Time Synchronization with the Network Time
Protocol (NTP)

Especially in data center environments it is essential to ensure that all ma-
chines keep their system clocks synchronized to a defined reference. The
standard protocol used for this purpose is the network time protocol (NTP).
It is a powerful and complex peer-to-peer protocol.

At this time there are two major implementations: The traditional refer-
ence implementation from the University of Delaware and a new implementa-
tion from the OpenBSD project. Since the OpenBSD implementation is less
mature and not as widely available we only address the reference implemen-
tation here. Its stable releases from version 4.2 on support IPv6.

90 6 Essential Network Services

Depending on the Unix we use, NTP support may need to be explicitly in-
stalled. On some legacy systems we may even need to build it from the sources
available at http://ntp.isc.org/bin/view/Main/SoftwareDownloads.

Debian Sarge We need the packages ntp, ntp-server and ntpdate. In
addition, the package ntp-doc contains the documentation.

On Linux the ntpd exhibits an annoying problem: If we have multi-
ple IPv6 addresses configured on our interface, then the server may
answer requests with the wrong source address. The client process

?
expects the answer from the same address that it sent the request to, so it
won’t receive the answer. As a workaround we can configure our time server
so that it has only a single address besides its link-local address.

FreeBSD 6.1 An IPv6-capable version of the NTP reference implementa-
tion is part of the core system.

Solaris 10 The standard packages SUNWntpr and SUNWntpu don’t support
IPv6 but a current build of the NTP reference implementation is available
from http://www.sunfreeware.com/. It also needs the readline, ncurses
and libgcc packages from there, too. In addition, we will need to create an
init script or set up our smf configuration, too. (If you write your own init
script, make sure that LD_LIBRARY_PATH includes /usr/sfw/lib.) 38

Configuration is entirely independent of the protocol family. We can spec-
ify IPv6 addresses in the config files or as command line parameters like IPv4
addresses. But since the configuration file expects netmasks to be given as
an IP address with the relevant bits set to one, netmasks as used with the
restrict statement don’t allow the standard slash notation. Instead we need
to specify them like

ntp.conf

restrict 2001:db8:fedc:: mask ffff:ffff:ffff:: nomodify

Probably the most annoying problem with respect to IPv6 is the fact that the
documentation hasn’t been updated to cover IPv6 yet.

Once we have the ntpd daemon running, we can use ntpdc or ntpq to see
if everything works. There are two minor annoyances you may notice:

• The tabular output of various subcommands has been tuned to fit IPv4
addresses on an 80 column display. These may truncate IPv6 addresses.

• Reverse name resolution doesn’t always work.

Otherwise, IPv6 support works without problems.

Checking if the service works mostly follows the generic scheme.

� Roughly set the clock manually using date if necessary.
� Start the NTP service.

6.6 Event Logging with Syslog 91

� Check with ps to see if the ntpd is running.
� Check with netstat to see if the NTP port is open.
� If you synchronize to another server, wait a few minutes to let the

clocks get in sync.
� Use either ntpdc or ntpq to see if the service works. Personally I prefer

to use the peers and listpeers subcommands in sequence to get both
the current state of the connections and the full name or address of the
remote peers:

ntpdc -c peers

remote local st poll reach delay offset disp

===

=LOCAL(0) 127.0.0.1 13 64 1 0.00000 0.000000 2.81735

=2001:db8:fedc:a :: 11 64 1 0.00476 65217.349 2.81735

=fbsd.example.co :: 16 64 0 0.00000 0.000000 0.00000

ntpdc -c listpeers

client LOCAL(0)

client 2001:db8:fedc:abcd:20c:29ff:fe78:478a

client fbsd.example.com

6.6 Event Logging with Syslog

Another important service in data centers is the network-based event logging.
The most common setup consists of a syslogd gathering log events locally
on every machine and forwarding them to a central “log host”. The log host
either runs syslogd or some monitoring software to receive, store and analyze
the incoming events.

IPv6 support within syslogd strongly depends on the particular Unix.

Debian Sarge The standard syslogd from the sysklogd package doesn’t
support IPv6. Neither does the alternative syslog-ng.

FreeBSD 6.1 If logging from remote machines is enabled in /etc/rc.conf,
both the access restriction option -a and the bind-to-address option -b of
syslogd support IPv6 addresses. The options -4 and -6 restrict network
logging to IPv4 and IPv6, respectively.

Solaris 10 By default the syslogd accepts log events from other machines
over both IPv4 and IPv6. 39

Remote loghosts can be specified in /etc/syslog.conf using either DNS
names or IPv6 addresses without further problems.

There is a minor oddity with the syslog service: It is UDP based and a
sender never receives an acknowledgment from the log host. With IPv6 this
leads to a problem if multiple DNS entries exist for the log host: The sender
can’t find out reliably if a packet was successfully delivered. This problem is
best addressed using a single AAAA record for a dedicated loghost host name.

92 6 Essential Network Services

FreeBSD 6.1 The option -A makes a log client send a log message to all
addresses that the DNS entry of a log host resolves to. Without -A the packet
is only sent to one of the addresses. While this doesn’t entirely solve the issue,
this is the best obvious solution short of redesigning the underlying protocol.

40

Checking the syslog service again mostly follows the usual three-step test
pattern:

� Check that the syslogd is running.
� Check that the syslog port is open.
� Use logger to send log messages of the appropriate priority to the

facility you want to test. If you use network monitoring software in
your environment, don’t forget to tell the colleagues in the operation
center about some impending test messages.

� Search the log files on the destination machine to see if the messages
have arrived.

6.7 E-mail: The Simple Mail Transfer Protocol (SMTP)

Many common mail transfer agents (MTAs) support IPv6 out of the box, so
setting up an IPv6-enabled mail server is usually quite simple.

Debian Sarge The standard mail transfer agent is Exim 4.50 from the
exim4 meta-package. If we configure Exim as either directly connected to
the Internet or using a smart host, it will automatically support IPv6 unless
we specify only IPv4 addresses to listen on for incoming connections. (We can
do that either during initial installation or with an explicit dpkg-reconfigure
exim4-config.)

FreeBSD 6.1 If we enable incoming mail, Sendmail 8.13.6 from the core
system will support both IPv4 and IPv6 without further configuration.

Solaris 10 Sendmail 8.13.3 from the packages SUNWsndmr and SUNWsndmu

supports IPv6 out of the box. 41

Independently of the particular Unix, most mail transfer agents support
IPv6. Some of the more common ones are these:

Exim IPv6 support with Exim is quite mature; it has been available for some
time now. There is an oddity about IPv6 addresses in Exim configuration
files that you may want to know about: IPv6 addresses are written with
double colons, so ::1 is written as ::::1.
IPv6 support is enabled either by not specifying any listen address at all
or by specifying the IPv4 and IPv6 addresses to listen to. To listen on
all IPv4 addresses, use 0.0.0.0 and to listen on all IPv6 addresses, use
::::0.

6.8 The World Wide Web: HTTP and HTTPS 93

Postfix Since version 2.2 Postfix officially supports IPv6; there have been
patch kits for earlier versions but they use a different configuration syntax
than 2.2, so upgrading is probably the best thing to do.
To enable IPv6 support we need to set the inet_protocols parameter in
main.cf either to “all”, “ipv6” or “ipv4,ipv6”; otherwise Postfix won’t
listen on IPv6 interfaces.

qmail There have been sporadic IPv6 patches around, but none of them
have been merged into the main source tree. Unless you are willing to
spend some time making qmail work with IPv6 and to take the risk of
being unable to do a quick upgrade when a security hole is found and
fixed in the mainstream source, it is a suboptimal choice if you also want
IPv6 support.

Sendmail Similar to Exim, Sendmail has supported IPv6 for some time
now. Most systems use m4 macro packages to configure it. Unfortunately
these macro packages differ, so if you want to get more fine-grained control
on how to tweak the configuration, you need to take a closer look at the
particular m4 macros you have.

Testing an e-mail setup again follows the usual strategy. The important
issue here is access control lists that restrict relaying functionalities.

� Use ps to see if the mail daemon is running.
� Check if the daemon actually listens on the interfaces you want.
� Send mails between machines. Make sure to test both incoming and

outgoing directions. If the configurations limit relaying to certain inter-
nal addresses or address ranges, make sure to test from corresponding
source addresses.

6.8 The World Wide Web: HTTP and HTTPS

IPv6 support with the hypertext transfer protocol (HTTP) and secure hy-
pertext transfer protocol (HTTPS) is available with some limitations. Web
browsers mostly support IPv6 without problems, but the choice of both web
servers and proxies is somewhat limited.

The good news is that the secure socket layer/transport layer security
(SSL/TLS) works independently of the IP version—at least as long as we
don’t use any certificates issued to a given IP address rather than a DNS
name.

6.8.1 IPv6 Addresses in URLs

According to RFC 3986 [8, section 3.2.2], IPv6 addresses in uniform resource
locators (URLs) are written in square brackets as we’ve already seen with
scp, like

94 6 Essential Network Services

http://[2001:db8:fedc:abcd::80]/index.html

As with scp, don’t forget to put all URLs in quotes if you use them on the
command line.

DNS names that resolve to IPv6 addresses are treated just like DNS names
that resolve to IPv4 addresses.

6.8.2 Web Browsers

Most web browsers support IPv6: Epiphany, Firefox, Konqueror and Mozilla
generally support IPv6.

Depending on the operating system, Lynx has partial IPv6 support—it
doesn’t allow IPv6 addresses in a URL but handles DNS names that resolve
to IPv6 addresses. Wget only supports IPv6 on some platforms, apparently
from version 1.10 on. Links doesn’t support IPv6 at all.

In more detail, IPv6 support with web browsers looks like this:

Debian Sarge Wget doesn’t support IPv6; all other browsers are available
and work with IPv6 as stated above.

FreeBSD 6.1 Wget (version 1.10.2) does support IPv6 here. All other
browsers are available and support IPv6.

Solaris 10 Firefox, Epiphany and Links are unavailable with Solaris. Wget
and Lynx don’t support IPv6. 42

6.8.3 The Apache Web Server

With respect to web servers the situation is slightly worse. IPv6 support has
been considered a major change in the Apache community; as a consequence,
only Apache version 2 has IPv6 support in the main source tree. There have
been sporadic patch sets available for some versions of Apache 1.x, but at
least in an untrusted environment they are no real option.

Configuring the base Apache2 doesn’t differ from an IPv4 setup. The
Allow from and Deny from directives accept IPv6 prefixes like they accept
IPv4. Only the Listen directive differs because it traditionally separates
the address and port number with a colon: With Listen we must put IPv6
addresses in brackets. Using :: as the address will make Apache2 listen on
all IPv6 interfaces. The default behaviour is equivalent to the setting

httpd.conf

Listen [::]:80

Listen 0.0.0.0:80

Debian Sarge The configuration file layout doesn’t follow the usual stan-
dards. Files are mostly kept in /etc/apache2/conf.d, but the Listen state-
ments belongs in /etc/apache2/ports.conf. 43

6.8 The World Wide Web: HTTP and HTTPS 95

Dealing with IPv4-mapped IPv6 addresses is still unsatisfying: There is
a compile-time ./configure option --enable-v4-mapped which controls the
handling of mapped addresses at compile time. Depending on the particular
binary distribution this may have been set during compilation or not. If
it was set, then we can control IPv4 and IPv6 support independently using
multiple Listen directives. Otherwise we are stuck as with xinetd on page 84.
Again, we have three options: If we use explicit Listen directives for addresses
individually, then we will run into problems during network renumberings. If
we use a Deny from ::ffff:0:0/96 directive, then connections will still be
established but an error message delivered to the client. The cleanest but most
complex solution again is a packet filter configuration that rejects incoming
IPv4 requests before they actually reach the web server.

Debian Sarge, Solaris 10 The standard Apache2 package has support for
IPv4-mapped IPv6 addresses enabled.

FreeBSD 6.1 Contrary to the Apache documentation, FreeBSD as of ver-
sion 6.1 has also been built with IPv4-mapped IPv6 addresses enabled. 44

Testing follows the familiar pattern.

� Check that there are httpd processes running.
� Check that they listen on port 80 on the interfaces you want.
� Use your preferred web browser to connect to them.

As far as modules and CGI (common gateway interface) scripts are con-
cerned, you’ll need to figure out if they support IPv6 yourself. Since Apache
deals with most network related issues chances are good that your preferred
modules and CGI scripts will support IPv6 as well, but I personally recom-
mend strongly to do some thorough testing before you put them into produc-
tion.

6.8.4 Web Proxies

Unfortunately the most popular web proxy, Squid, doesn’t officially support
IPv6. There have been patches available for some versions and people have
worked on IPv6 support in a development branch, but no IPv6-enabled release
has become available yet. So for now, Squid is barely an option.

Some alternatives exist. If we have an Apache2 up and running, we can
use its proxy and possibly cache modules. If we need a proxy as a firewall
application level gateway, we have a choice of alternate proxies. My personal
favourite here is called ffproxy. It does neither FTP proxying nor caching
but provides extended filtering features and seems to be secure enough to run
in a firewall setup without major worries.

To configure Apache2 as a proxy we need to build it with the proxy and
optionally the cache module.

96 6 Essential Network Services

Debian Sarge, Solaris 10 The proxy module works out of the box.

FreeBSD 6.1 The binary package is compiled without these modules. We
need to re-build the Apache2 from the ports tree with the additional flag
WITH_PROXY_MODULES and possibly with WITH_CACHE_MODULES. 45

To enable the proxy module and restrict access to our own network, we
add lines like

httpd.conf

ProxyRequests On

<Proxy *>

Order deny,allow

Allow from 2001:db8:fedc::/48

</Proxy>

ProxyVia On

to httpd.conf. Restricting access to the proxy isn’t mandatory, but running
an open proxy is a security risk similar to an open mail relay.

Debian Sarge Since the configuration is scattered over multiple files in the
/etc/apache2 directory, we must copy proxy.load and proxy.conf from
mods-available to mods-enabled and then adjust the proxy configuration
in mods-enabled/proxy.conf. 46

The lightweight HTTP/HTTPS-only ffproxy daemon is available from
http://ffproxy.sourceforge.net/ as source code; the current version is
1.6. It generally compiles and installs cleanly without problems.

FreeBSD 6.1 The ports/packages collection contains an ffproxy package
so we don’t need to compile it ourselves. 47

As usual we also need to set up our system to start the ffproxy com-
mand when the system boots, using whatever mechanism the particular Unix
provides.

To configure ffproxy we first change the line unrestricted_connect no

to yes; otherwise ffproxy will only proxy HTTPS requests. In addition we
should set daemonize to yes to daemonize the process after start. Next we
need to configure the filters. For simplicity sake, we add a line

/usr/local/share/ffproxy/db/access.ip

^2001:db8:fedc:.*

to /usr/local/share/ffproxy/db/access.ip to allow clients from our own
networks to use the proxy. Be careful, this file contains regular expressions
rather than address prefixes. After that we start the proxy. Testing again
follows the usual pattern:

� Check with ps that ffproxy is up and running.
� Use netstat to ensure that it listens (by default on port 8080).

6.9 The Network File System (NFS) 97

� My preferred client to test a proxy is lynx because it lets me specify
the proxy in an environment variable, like

http_proxy=http://proxy:8080/ lynx http://www.example.com/

Especially if you want to test access restrictions, make sure you run
a client on a machine with a matching IP address to see if access is
denied as desired.

6.9 The Network File System (NFS)

Despite its inherent insecurity, the network file system (NFS) is still widely
used. It is based on the remote procedure call (RPC) service, which doesn’t
support IPv6 on all platforms yet.

Debian Sarge Linux in general doesn’t support RPC over IPv6 yet. This
implies that NFS over IPv6 isn’t available so far.

FreeBSD 6.1, Solaris 10 The portmapper (in both cases called rpcbind)
supports IPv6 as well as IPv4. 48

Besides an IPv6 capable portmapper the only relevant IPv6 issue with
NFS are access controls.

FreeBSD 6.1 In /etc/exports we can restrict access to address prefixes
like

/etc/exports

/export -network 2001:db8:fedc::/48

as well as the customary DNS names.

Solaris 10 There is no IPv6 equivalent of the usual rw=192.0.2.0/24 syn-
tax in /etc/dfs/dfstab; it is only possible to restrict access by DNS names
and domains. For example

/etc/dfs/dfstab

share -F nfs -o rw=-bad.example.com:.example.com /export

will grant all machines from the example.com domain with the exception of
bad.example.com read/write access to /export.

At first glance the security implications of using a DNS based “authentica-
tion” are scary. But considering how insecure NFS generally is, the additional
insecurity doesn’t really matter that much in most cases. 49

There is one final bit of information that doesn’t directly relate to IPv6 but
may be important when testing between different operating systems: Some
NFS servers will refuse connections from clients that use a high port number
on their side.

98 6 Essential Network Services

FreeBSD 6.1 FreeBSD servers expect a client to connect from a low port.
To change that, mountd must be started with an additional -n option. Free-
BSD clients will use a low port.

Solaris 10 Solaris servers don’t care about the port that a client connects
from. A Solaris client will use a high port number to connect to a server. 50

Testing follows the usual pattern but requires some different commands.

� Check that the NFS-related processes are up and running.
� Verify that they are listening on the appropriate sockets. Since RPC

doesn’t bind to fixed port numbers, netstat is not too useful here. Use
rpcinfo -s or rpcinfo -p instead. If you want to use a packet sniffer
to debug a problem, rpcinfo will provide you with the port numbers
to watch for.

� Check the access configuration. Use showmount -e here.

Solaris 10 Invoking share without options provides even more infor-
mation. 51

� Try to mount the remote file systems from a client.

6.10 Other Services

A wide range of other applications readily support IPv6. Sometimes it is
difficult to tell if they do, or to find an IPv6-enabled implementation of a
given protocol.

If we want to know if a given software package supports IPv6, then we
should obviously search its documentation. Sometimes we may find an old
announcement that a long since released version will be IPv6-enabled, only
to find no hint of IPv6 support with this version. Only close scrutiny of
the change log shows that IPv6 support has actually been added. This phe-
nomenon has a simple reason: Making software IPv6-capable is usually no
big deal, but developers who are not yet familiar with IPv6 don’t realize this
and expect it to be a huge effort. So there is a spectacular announcement
that IPv6 support will be added in the next release when the developers don’t
yet know what to expect and a minor note in the change log when they have
added IPv6 support.

If we don’t find anything about IPv6 in the documentation, then it is
sometimes helpful to just run the program and use netstat to see if it opens
an IPv6 socket. This isn’t the most reliable strategy, but it is especially helpful
if the documentation hasn’t been updated yet.

Finally, if we have access to the sources, grepping for the string INET6

often gives a clue if IPv6 support is at least under way. This is even less
reliable than using netstat and often time-consuming, but if we really need
to know, then it may be worth the effort.

6.11 Packet Filter Considerations 99

If we don’t want to know about a single application or software package,
but look for a software that offers a given service or functionality, then it
is quite tedious to check all possible candidates this way. The Deepspace6
project at http://www.deepspace6.net/ offers an extensive overview of the
IPv6 support in various software projects, especially with respect to Linux
and, to a lesser degree, the BSDs. It is the ultimate resource when looking for a
specific service, like an IPv6-enabled NNTP or IMAP server. Occasionally the
information there may be slightly outdated, usually claiming that a software
isn’t IPv6-enabled yet even though its latest release is; please send them an
update note if you find such a case.

6.11 Packet Filter Considerations

Since we have already done most of the hard work on packet filter configu-
ration in section 4.7, adding filter rules for services is quite straightforward.
We just allow TCP and UDP traffic based on the source and destination port
numbers.

Client and server configurations differ noticeably. A client will only allow
outgoing connections. A server will always allow incoming connections and in
some cases, like web proxies or mail relays, outgoing connections as well. With
TCP, we can use the SYN and ACK flags to decide if a connection is to be
established. UDP doesn’t have flags like that, so we either need to rely on the
connection tracking of our packet filter or allow traffic either way. In short,
the only major difference between IPv4 and IPv6 packet filter configurations
at this point is the limited functionality some packet filters provide, especially
as far as stateful filtering is concerned.

Two protocols deserve particular attention: Since RPC and RPC-based
services don’t run on fixed port numbers, they can’t be filtered at the packet
level. And since the syslog service only sends datagrams from a client to a
server, it doesn’t really create any state we can use for our filtering purposes.

We can extend the filter configuration in section 4.7 without much trouble
to support DNS and the protocols introduced in this chapter.

6.11.1 TCP Services

For “demonstration purposes” we configure our packet filters from section 4.7
to allow TCP traffic on port 22, for the secure shell. We can configure other
ports accordingly simply by changing the port number.

Debian Sarge So far, all TCP packets that made it through the sanitation
rules will be discarded by the default rule. To allow TCP connections on
port 22 we must filter by the combination of SYN and ACK flags.

100 6 Essential Network Services

For incoming connections we can use filter rules like

/etc/ip6tables.sh

accept INPUT -p tcp --dport 22 --syn

accept INPUT -p tcp --dport 22 --tcp-flags SYN,ACK ACK

The first rule allows SYN packets to initiate a connection while the second
allows already-established connections (with ACK set but SYN not) to pro-
ceed.

Similarly, we can allow outgoing connections with a rule

/etc/ip6tables.sh

accept INPUT -p tcp --sport 22 --tcp-flags ACK ACK

since all but the first packet (that will be allowed out without extra filtering)
will have the ACK flag set.

In both cases we use the fact that ip6tables uses a separate FORWARD chain
for packets that have non-local addresses as both the source and destination.
We can simply append the rules to our existing filter configuration script.

FreeBSD 6.1 With the stateful filtering features of pf we only need to filter
the initial SYN packet to establish state for the connection.

For incoming connections we use a rule

/etc/pf.conf

pass in quick inet6 proto tcp from any to {$ifs} port 22

flags S/SA keep state

and for outgoing connections analogously

/etc/pf.conf

pass out quick inet6 proto tcp from {$ifs} to any port 22

flags S/SA keep state

In either case we need to place these lines before the catch-all TCP block rule
from section 4.7.5. 52

6.11.2 UDP Services

UDP configuration is similar but can’t use the SYN and ACK flags of TCP.
We use DNS on port 53 in the configuration example.

Debian Sarge On a DNS server we need the filter rule

/etc/ip6tables.sh

accept INPUT -p udp --dport 53

and on a client the rule

6.11 Packet Filter Considerations 101

/etc/ip6tables.sh

accept INPUT -p udp --sport 53

again using the fact that we don’t filter outgoing packets. As with TCP, we
can simply append these rules to the end of our filter configuration.

FreeBSD 6.1 Since pf supports stateful filtering for UDP as well as TCP,
the filter rules look quite similar to those for TCP. On a server we need the
rule

/etc/pf.conf

pass in quick inet6 proto udp from any to {$ifs} port 53 keep state

and on a client the rule

/etc/pf.conf

pass out quick inet6 proto udp from {$ifs} to any port 53 keep state

As with TCP we must put these rules in front of the catch-all block rule for
UDP. 53

6.11.3 Performance Tuning

So far we have blissfully ignored performance issues with our filter rules. There
are two simple tricks that are generally useful: We can use entire lists of
ports that are treated similarly and we can arrange the rules in an order that
minimizes the number of rule evaluations.

Using entire lists of ports in a single filter rule requires a packet filter
implementation that can handle such lists. How this is done again depends
on the filter implementation.

Debian Sarge There is a filter module called multiport that supports lists
of up to 15 ports in a single rule.

FreeBSD 6.1 The braces notation we use for lists of addresses or interfaces
also works with port numbers. It will expand to multiple rules, so it doesn’t
improve performance but only readability and conciseness of our configuration
files. Additionally, pf supports port ranges, so if a contiguous range of ports
is treated the same, then using these ranges can improve performance. 54

Short of analyzing a packet filter’s rule statistics, there are some very
simple ways to improve filter performance with respect to the arrangement of
filter rules.

With last-match semantics filters, using a “quick” option reduces the num-
ber of rule evaluations on virtually all packets.

Filtering TCP before UDP before ICMPv6 usually improves performance
because most traffic tends to be TCP.

102 6 Essential Network Services

Using some sort of non-linear rules, like multiple chains with ip6tables

or anchors with pf, can quite drastically reduce the number of rules applied
to every packet.

The price for many of these tuning tricks is that most filter rule sets
become more difficult to understand and consequently more error-prone. So
don’t waste your time tuning a packet filter unless you know that the filter has
a performance problem and you are willing to take the extra risk of making a
mistake.

7

Unicast Routing Basics

There is one feature missing to make our IPv6 setup complete: Routing be-
tween multiple subnets. In this chapter we set up routing for unicast packets.

IPv6 routing differs from IPv4 routing in a number of respects. Classless
inter-domain routing (CIDR) was retrofitted to IPv4 when it became obvious
that class-based routing was becoming infeasible. IPv6 never had a notion
of class-based routing. Similarly, variable length subnet masks (VLSM) have
been added to IPv4 to make better use of the available address space. IPv6
uses a fixed subnet prefix length; this simplifies routing configuration quite
noticeably. With IPv4, hosts may find a default router either through DHCP
or ICMP router discovery as defined in RFC 1256 [37]. IPv6 uses stateless
autoconfiguration to discover all routers in a subnet instead.

7.1 Hosts and ICMPv6 Redirects

But how exactly does this work when multiple routers provide different routes?
How does a host figure out which router to send a packet to?

Consider the network in figure 7.1. If host 1 wants to send a packet to
host 2 or host 3, it will send it to router 1 to take care of the forwarding.
As a router, router 1 will know how to deliver the packet either to host 2 or
router 2, which in turn delivers it to host 3.

But what happens when host 2 wants to send a packet to host 3? It only
has a list of default routers that contains both router 1 and router 2, so there
is a 50% chance that it will send the packet to router 1 instead of router 2.

Router 1 knows that it should send the packet to router 2 to forward it
to host 3 and it will do so. Router 1 also knows that host 2 and router 2
are connected to the same subnet and therefore future packets from host 2 to
host 3 should be sent from host 2 directly to router 2. So it sends an ICMPv6

104 7 Unicast Routing Basics

2001:db8:fedc:1::/64 2001:db8:fedc:2::/64 2001:db8:fedc:3::/64

Router 1 Router 2Host 1 Host 2 Host 3

Fig. 7.1. Autoconfiguration and ICMPv6 redirects

redirect message to host 2, telling it to send all future packets to host 3 via
router 2.

When host 2 receives the redirect, it stores it in its destination cache. The
destination cache is effectively a routing table that gathers and updates host
routes through redirect messages—in fact, depending on the implementation
the destination cache is the routing table and the routes discovered are stored
there and marked as dynamic. Neighbor unreachability detection ensures that
outdated entries don’t cause any harm: When the router associated with an
entry becomes unavailable, the entry is discarded.

Stateless autoconfiguration and ICMPv6 redirects together provide redun-
dant routing services to hosts without running a dynamic routing service on
the hosts involved.

Somewhat surprisingly, there are no timeouts defined for the destination
cache entries: A host will discard entries if the cache grows too large, but since
stale entries are detected by neighbor unreachability detection it doesn’t make
sense to discard entries based on a timeout.

7.2 Inside IPv6: ICMPv6 Redirect Protocol Details

ICMPv6 redirects provide a mechanism that lets a router notify a host about
a better route to a destination. In our scenario above we have discussed the
case that another router is closer to the destination than the one sending
the redirect. Additionally, ICMPv6 redirects may be used to notify a host
that a destination is “on-link”, or directly connected to the same subnet. In
a “clean” network these redirects shouldn’t occur, but if you have multiple
network prefixes configured on a subnet and different hosts for some reason
have inconsistent prefix configurations, then these redirects are useful.

Only hosts accept ICMPv6 redirects; routers are explicitly forbidden to
listen to them. Otherwise routers could be easily manipulated to forward
packets to an attacker instead of the real destination. And if the router
accepted ICMPv6 redirects and subsequently sent similar ICMPv6 redirects
itself, then a single bad ICMPv6 redirect could result in a self-perpetuating
broken routing configuration.

7.2 Inside IPv6: ICMPv6 Redirect Protocol Details 105

Figure 7.2 shows how redirects are sent. Host 2 from the example sends a
packet via router 1 which then decides from its routing table that router 2 was
closer to host 3 than router 1. Router 1 still forwards the packet to router 2.
Then it sends an ICMPv6 redirect to the host to notify it about the better
route via router 2. The exact behaviour is defined in RFC 2461 [91, section
8].

Router 1 Host 2 Router 2

Initial IPv6 packet

from Host 2 to Host 3

Initial IPv6 packet from Host 2 to Host 3
IPv6 packet from Router 1 to Host 2
ICMPv6 Type 137 (Redirect) Code 0

Target Address=Router 2
Destination Address=Host 3

Further IPv6 packets
from Host 2 to Host 3

...

...

Fig. 7.2. An ICMPv6 redirect in action

The exact format of an ICMPv6 redirect packet is defined in RFC 2461 [91,
section 4.5].

The IPv6 header of a redirect must have a link-local address as its source
address and a hop limit of 255 when it arrives at the host; otherwise the host
must discard the packet. If the hop limit was less, then the ICMPv6 redirect
itself may have passed through a router, which doesn’t make sense—unless
somebody outside tries to send spoofed redirects.

The ICMPv6 packet proper contains these fields:

ICMPv6 type is always 137 (ICMPv6 redirect).
ICMPv6 code is always 0.
Target address is the link-local IPv6 address of the next hop router

(router 2) or the destination address if the destination node is on-link.
Destination address is the IPv6 address of the destination.
Target link-layer address Optionally, the packet may contain the link-

layer address of the target.
Redirected header The packet must also contain the beginning of the

packet that triggered the redirect. This field is sent as an option but
must be included in the packet.

106 7 Unicast Routing Basics

To avoid excessive network load, ICMPv6 redirects won’t be sent for ev-
ery ill-routed packet; a host that ignores these redirects could otherwise cause
significant network load. RFC 2461 [91, section 8.2] explicitly states that a
router must limit the number of redirects it sends. There is no exact specifica-
tion on how to define an acceptable limit, but when we test ICMPv6 redirects
we can’t expect to see as many redirects as we have sent ill-routed packets.

7.3 Static Routing

As far as routers are concerned, routing hasn’t changed much with IPv6. With
IPv4, it is easiest to manually set up static routes on all routers. With IPv6,
we can do the same.

Assume that we want to add four static routes to a router:

Address/Prefix Next-hop Router
2001:db8:fedc:aaaa:0ff:0ff:0ff:0ff 2001:db8:fedc:1::1

2001:db8:fedc:bbbb::/64 2001:db8:fedc:1::2
2001:db8::/32 2001:db8:fedc:1::3

default 2001:db8:fedc:1::4

How these routes are configured depends on the Unix in question.

Debian Sarge The commands netstat -rnA inet6, route -A inet6 and
ip -6 route show all display the routing table. We can add routes temporar-
ily like this:

route -A inet6 add 2001:db8:fedc:aaaa:0ff:0ff:0ff:0ff \

gw 2001:db8:fedc:1::1

route -A inet6 add 2001:db8:fedc:bbbb::/64 gw 2001:db8:fedc:1::2

route -A inet6 add 2001:db8::/32 gw 2001:db8:fedc:1::3

route -A inet6 add default gw 2001:db8:fedc:1::4

The route command assumes a host route by default, so even for an individual
subnet it is necessary to provide the prefix length. Alternatively, we can use
ip:

ip -6 route add 2001:db8:fedc:aaaa:0ff:0ff:0ff:0ff\

via 2001:db8:fedc:1::1

ip -6 route add 2001:db8:fedc:bbbb::/64 via 2001:db8:fedc:1::2

ip -6 route add 2001:db8::/16 via 2001:db8:fedc:1::3

ip -6 route add default via 2001:db8:fedc:1::4

If we don’t specify a prefix, ip also assumes a host route. To delete a route
with both commands we substitute add with del.

If we want to configure the routes permanently, we need to add them
to /etc/network/interfaces. Since its syntax only supports the configu-
ration of a default route, we need to add the other routes using up and down

statements:

7.3 Static Routing 107

/etc/network/interfaces

iface eth0 inet6 static

address 2001:db8:fedc:1::2

netmask 64

gateway 2001:db8:fedc:1::4

up /sbin/ip -6 route add 2001:db8:fedc:aaaa:0ff:0ff:0ff:0ff \

via 2001:db8:fedc:1::1

down /sbin/ip -6 route del 2001:db8:fedc:aaaa:0ff:0ff:0ff:0ff \

via 2001:db8:fedc:1::1

up /sbin/ip -6 route add 2001:db8:fedc:bbbb::/64 \

via 2001:db8:fedc:1::2

down /sbin/ip -6 route del 2001:db8:fedc:bbbb::/64 \

via 2001:db8:fedc:1::2

up /sbin/ip -6 route add 2001:db8::/16 \

via 2001:db8:fedc:1::3

down /sbin/ip -6 route del 2001:db8::/16 \

via 2001:db8:fedc:1::3

FreeBSD 6.1 To display the routing table we use netstat -rnf inet6.
Routes are added with route using this syntax:

route add -inet6 2001:db8:fedc:aaaa:0ff:0ff:0ff:0ff \

2001:db8:fedc:1::1

route add -inet6 -net 2001:db8:fedc:bbbb:: 2001:db8:fedc:1::2

route add -inet6 2001:db8:fedc:bbbb::/64 2001:db8:fedc:1::2

route add -inet6 2001:db8:/32 2001:db8:fedc:1::3

route add -inet6 default 2001:db8:fedc:1::4

If an address is given, route assumes a host route unless the option -net is
also specified; in this case, it assumes a /64 prefix. So the second and third
route invocations are equivalent. To delete a route, we replace add with
delete and drop the next-hop router:

route delete -inet6 2001:db8:fedc:aaaa:0ff:0ff:0ff:0ff

route delete -inet6 -net 2001:db8:fedc:bbbb::

route delete -inet6 2001:db8:fedc:bbbb::/64

route delete -inet6 2001:db8:/32

route delete -inet6 default

We can make the configuration permanent in /etc/rc.conf:

/etc/rc.conf

ipv6_static_routes="route1 route2 route3 default"

ipv6_route_route1="2001:db8:fedc:aaaa:0ff:0ff:0ff:0ff

2001:db8:fedc:1::1"

ipv6_route_route2="2001:db8:fedc:bbbb::/64 2001:db8:fedc:1::2"

ipv6_route_route3="2001:db8::/32 2001:db8:fedc:1::3"

ipv6_route_default="default 2001:db8:fedc:1::4"

108 7 Unicast Routing Basics

The first line defines a list of names associated with the routes. The following
lines contain the arguments to route for each such route.

Solaris 10 As with FreeBSD, netstat -rnf inet6 displays the current
routing table.

To add routes, we use the route command:

route add -inet6 2001:db8:fedc:aaaa:0ff:0ff:0ff:0ff \

2001:db8:fedc:1::1

route add -inet6 2001:db8:fedc:bbbb::/64 2001:db8:fedc:1::2

route add -inet6 2001:db8:/32 2001:db8:fedc:1::3

route add -inet6 default 2001:db8:fedc:1::4

Different than FreeBSD, the -net and -host options are parsed but other-
wise ignored; we need to specify an explicit prefix length for network routes.
Otherwise a /128 prefix length is assumed.

Routes are deleted using the same syntax but with delete instead of add;
we need to specify the next-hop router even when we remove an existing route.

Solaris doesn’t offer a standardized way to configure static routes per-
manently; we are expected to use dynamic routing instead. While IPv4
allows us to specify static routes in /etc/gateways when we run dynamic
routing, IPv6 doesn’t even offer this feature. This leaves us in an awk-
ward situation. If you are really desperate, you might want to extend
the smf configuration to provide for static routes; fortunately, a simple
but usable solution for both IPv4 and IPv6 has been made available at
http://www.visi.com/%7Ecpj1/code/static-routes.tar.gz. While this
is not officially supported by SUN, it may do the trick for your purposes.

55

7.4 Dynamic Routing with RIPng

Managing static routing tables tends to be tedious and error-prone, especially
since IPv6 addresses are so easy to mistype. With IPv4 the routing informa-
tion protocol (RIP) as of RFCs 1058 [60] and 1388 [84] provides us with a
means to set up routing tables automatically within a so-called autonomous
system (AS). In RFC 2080 [85] RIP has been modified to support IPv6 ad-
dresses, resulting in a routing protocol called RIPng.

RIPng has inherited all the limitations of RIP: It supports a maximum
of 15 hops between end points; it computes the routes based on hop counts
only, ignoring latency, bandwidth or communications costs; and it is slow to
discover and cope with failing routers.

But it also inherits all the advantages of RIP: It is generally available, easy
to use and needs little resources from the network and routers involved.

If the network topology is reasonably “clean” and the failover requirements
are anywhere near “faster than I can change the routing myself”, RIPng is

7.4 Dynamic Routing with RIPng 109

quite useful. Otherwise, OSPF might be the preferred alternative, so we’ll
take a look at it in chapter 17.

With the exception of most Linux distributions, Unixen normally bring
a RIPng daemon with their core system. In consequence, installation and
configuration are usually trivial.

Debian Sarge First we need to install a routing daemon. Since there is no
lightweight RIPng-only routing daemon available the best choice is Quagga,
a heavyweight but widely used dynamic routing software.

To enable quagga we first edit /etc/quagga/daemons and modify the lines

/etc/quagga/daemons

zebra=yes

ripngd=yes

This Debian-specific configuration determines what daemons to run. “Ze-
bra”, which is also the name of the predecessor of Quagga, is a daemon that
provides a protocol-independent dynamic routing framework, so we need it.
Additionally we need support for RIPng, too.

Next we configure the zebra daemon with an empty configuration file
/etc/quagga/zebra.conf and ripngd with the lines

/etc/quagga/ripngd.conf

router ripng

network ::/0

The first line enables the RIPng protocol and the second makes the daemon
provide announcements on all interfaces. Finally we can start the routing
daemons with /etc/init.d/quagga start.

FreeBSD 6.1 First we add a line

/etc/rc.conf

ipv6_router_enable=YES

to /etc/rc.conf. Then we run /etc/rc.d/route6d start to start the
route6d daemon or reboot the router.

Solaris 10 We enable the dynamic routing daemon in.ripngd with the
routeadm command:

routeadm -e ipv6-routing

routeadm -u

The first line enables dynamic routing in the boot configuration, the second
applies the boot configuration to the running system and saves us a reboot.

56

110 7 Unicast Routing Basics

7.5 Testing and Debugging

To debug our routing configuration we need to understand that routing isn’t
inherently symmetric: It is well possible that a packet can be sent from ma-
chine A to machine B but not from B to A. And even if both directions work,
the packets may travel along different paths. If routing doesn’t work, the best
bet is to use a tool like ping6 to generate a stream of packets and a packet
sniffer to watch the packets on all routers along the way.

With RIPng it is also important to understand about the timing involved.
Every 15–45 seconds a RIPng router will announce its routing table to its
peers. The peers check if the announcement contains routes that are shorter
than routes they currently use; if so, they update their routing table accord-
ingly. If the router doesn’t send an announcement for 180 seconds, its peers
assume the router died and drop the routes through it. As soon as they learn
about an alternate route they will use this new route.

Depending on the network topology it may take a network several minutes
to recover from a router failure. During this time, routing may seem to behave
erratically, with traceroute6 appearing to lose packets at some intermediate
router but still reaching the end (because the back routing doesn’t work from
the intermediate routers) and similar effects. During this time, wait for the
network to recover.

To simplify debugging it is often useful to have the routing daemons log
all routing table changes:

Debian Sarge/Quagga We add the lines

/etc/quagga/ripng.conf

log file /var/log/ripng.log

debug ripng events

to /etc/quagga/ripng.conf. Then we create the file /var/log/ripng.log

and make the quagga user its owner. Finally, we restart the Quagga daemons.

FreeBSD 6.1 The routing daemon needs to be started with the additional
option -R /var/log/ripng.log. We can adapt /etc/rc.conf accordingly:

/etc/rc.conf

ipv6_router_flags="-R /var/log/ripng.log"

The -R option makes route6d log its actions in the specified file. Afterwards
we must either restart the routing daemon again or reboot the router.

Solaris 10 We must run the commands

routeadm -s ipv6-routing-daemon-args="-s -v /var/log/ripng.log"

routeadm -u

to enable logging. The -s option to the routing daemon is a default flag that
according to the documentation makes even a “single-legged” router send out

7.6 Inside IPv6: RIPng Protocol Details 111

routing information; -v enables event logging and the final argument specifies
the log file. 57

If you want to keep your routing daemons logging all the time, don’t forget
to rotate the log files occasionally. Otherwise, turn the logging off when you
don’t need it anymore.

To ensure that the network is working properly, we check it bottom-up
again.

� With ifconfig, verify that all interfaces are up, running and config-
ured as intended.

� If you use static routes, check that the routing tables on all routers
show the correct configuration.

� If you use dynamic routing, check that the routing daemons are running
and listening on port 521/UDP.

� With ping6 or traceroute6 check that routing works as expected.
Depending on your Unix, use the -n option to suppress DNS lookups;
otherwise a problem reaching the name server might actually appear
like a routing failure towards a completely different destination.
If you use dynamic routing and run into problems here, check the
routing daemon logs and watch the RIPng traffic with a packet sniffer.

� With dynamic routing, try to bring in a new router. Do its routes
propagate? Will shorter routes become known to the other routers?

� With dynamic routing, bring a router down. If it isn’t redundant, do
the other routers drop all routes through it? If it is redundant, will
they change their routing to a working router?

Again, remember that RIPng doesn’t converge too fast. Don’t get uneasy,
first spend a few minutes watching the routers involved. You should see them
converge towards a working routing configuration.

7.6 Inside IPv6: RIPng Protocol Details

RIPng is specified in RFC 2080 [85]. It uses a simple metric of integer numbers
from 0 to 15 to measure the “length” of a route. By default, a router will
add one to the metric before passing the route on, thus limiting support to
networks with a network diameter, the maximum number of hops between
any two nodes, of 15 hops at most.

There are two types of RIPng messages: Requests and responses. A re-
quest may either ask for individual routes or full routing information. A
response to a request will only provide the information requested. An un-
solicited response announces the entire routing table (but see below on the
“split horizon” and “poisoned reverse” features).

RIPng routing daemons listen on the multicast address ff02::9 as well
as their unicast addresses for UDP datagrams on port 521. They will accept

112 7 Unicast Routing Basics

requests from and send solicited responses to non-local addresses for monitor-
ing and debugging purposes. They send unsolicited responses to the multicast
group from the link-local addresses of the interfaces only and they only update
their routing tables if the message was received that way. When a routing
daemon receives an unsolicited response, it updates its routing table if the
response informs the routing daemon of a better route. Every time a rout-
ing daemon receives a response, it resets the expiration timer of the routes
received to 180 seconds.

Routers send unsolicited responses with the full routing information every
15–45 seconds; randomization prevents synchronization effects that periodi-
cally overload the network.

When a route changes, the routing daemon sends a triggered update to
all interfaces but the one that the route refers to. This update is delayed a
randomized interval ranging from 1 to 5 seconds to prevent excessive network
load in certain situations.

To optimize the protocol, the split horizon algorithm first eliminates all
entries that refer to the interface that the response is sent to; after all, passing
data to these destinations shouldn’t touch the router sending the response.
To speed up convergence, the poisoned reverse optimization instead transmits
these routes, but with a metric of 16, marking them as unreachable, so they
can be removed on the receiving routers before the route’s lifetime expires.
Both of these optimizations may be explicitly disabled if necessary.

7.7 Routing Architecture Strategies

Generally, IPv4 and IPv6 don’t differ too much with regard to routing. But
with stateless autoconfiguration a number of things get easier with respect
to dynamic routing, so re-thinking an IPv4-oriented routing strategy may be
worthwhile.

7.7.1 Basic Considerations

There are some fundamental considerations you probably want to take into
account when you manage a routing architecture:

Keep routing symmetric if at all possible. While IP supports asymmetric
routing, dealing with it is difficult and tedious. It will make traceroute6
less useful because you may not receive replies from all intermediate
routers and you will need to deal with twice as many routes between
any two nodes because you have to consider both directions individually.

Strive for a clean, hierarchical network topology so convergence af-
ter a router failure is quick. Avoid “shortcut” links between networks
that circumvent the general routing architecture. Finally, keep your net-
work diameter small.

7.7 Routing Architecture Strategies 113

Dynamic routing won’t compensate for a messy network topology but will
make things worse because convergence becomes excessively slow.

Keep your routing skills up so you can anticipate problems before they
occur and quickly deal with them when they actually happen.
Again, dynamic routing doesn’t magically substitute an inexperienced
network administrator.

Document and understand your network and keep the documentation
handy. No matter how experienced you are, if your network has a problem
you won’t have time to figure out how it is actually set up.

None of these aspects are specific to IPv6, but if you want to use dynamic
routing, they are a prerequisite to smooth operations.

7.7.2 Static or Dynamic Routing?

Choosing between static and dynamic routing is more than a dogmatic issue.
If you are unfamiliar with dynamic routing concepts and have a “historically
grown” network topology that nobody understands anymore, static routing is
the way to go. But otherwise, dynamic routing is probably preferable.

Dynamic routing lets us set up redundant networks with minimum hassle
as we’ll see in the next section. It also simplifies router configuration as we’ve
already seen.

With stateless autoconfiguration and ICMPv6 redirects, hosts already sup-
port dynamic routing in a way, even without a local routing daemon that pas-
sively listens for route announcements and maintains the routing table. With
IPv4 this used to be the reason why dynamic routing was often not used to
its full extent: Setting up all hosts to deal with dynamic routing tended to
be tedious at best and all too often caused network problems by itself. IPv6
makes dynamic routing feasible in many border cases, so once you have a ba-
sic environment with static routing up and running you may want to consider
switching to dynamic routing.

7.7.3 Network Redundancy

Consider the simple, non-redundant network in figure 7.3. With dynamic
routing we can easily make the backbone network redundant by just adding
another interface to each router and connect them to a fallback backbone
network.

We can also make the routers redundant. Figure 7.4 shows how to do this.
For now ignore the dashed connections between the routers and the backbone
networks. All bottom subnets are connected to the two backbones through
independent routers. If a router fails, all traffic will be routed through the
backbone that the surviving router is connected to. With IPv4, this setup
would require a passively listening routing daemon on all hosts connected

114 7 Unicast Routing Basics

Backbone

Left Subnet Middle Subnet Right Subnet

Router 1 Router 2

Fig. 7.3. A simple, non-redundant network

to the bottom subnets. With IPv6, autoconfiguration already provides this
functionality.

If we also add the dashed connections, we reduce the impact of a router
failure on the remaining routers. Assume that router 1a fails. Now all traffic
from the middle and right subnet to the left has to pass through router 1b.
Without the dashed connections, all traffic also has to pass through router 2b
because router 2a can’t reach router 1b. With the dashed connections, both
router 2a and router 2b can reach router 1b, thus sharing their load over two
routers.

We are now missing just one more thing to make our network fully redun-
dant: Redundant bottom subnets. Unfortunately we can’t do this with IPv6:
If we had redundant bottom subnets and hosts connected to them, each host
would need to use the same IP address on both subnets. There are however
special network interface cards with redundant physical interfaces and link-

Backbone

Fallback Backbone

Left Subnet Middle Subnet Right Subnet

Router 1a Router 1b Router 2a Router 2b

Fig. 7.4. The same network made redundant

7.7 Routing Architecture Strategies 115

layer mechanisms like Solaris’ IP multipathing (IPMP) to achieve redundancy
even at the subnet layer.

We could even use IP multipathing and similar to make the backbone
redundant. But doing so won’t scale while dynamic routing does: If the
backbone networks reach their performance limit, dynamic routing lets us
simply split them up into multiple subnets.

7.7.4 Router Performance Issues

Performance in routers can actually become a problem with IPv6: Both dedi-
cated hardware routers as well as high-profile server hardware may implement
part of their TCP/IP stack in hardware. If we use a server with a TCP/IP
offload engine (TOE) that only implements IPv4, or implements IPv6 only
partially, then we may run into performance problems with IPv6 just like the
network administrators taking care of big routers.

To deal with that situation we may need to split our networks into smaller
segments and/or install additional routers, possibly with less network inter-
faces. That won’t solve all potential performance issues in our network, but in
many cases reducing the size of our subnets will alleviate performance issues
related to routers.

7.7.5 Performance Issues with ICMPv6 Redirects

Another performance issue related to routing may be caused by ICMPv6
redirects. Figure 7.5 shows how this can happen. The server is receiving con-

Server Network

Left Cloud Right Cloud

Left
Router

Right
Router

Big
Server

Fig. 7.5. A busy server swamped with ICMPv6 redirects

nections from a large number of machines from both network clouds. Since
it will receive routing information only as ICMPv6 redirects, and these redi-
rects are stored as host routes, it will effectively maintain a routing table
entry for every single client. This may put a noticeable strain on the server
performance.

116 7 Unicast Routing Basics

A network situation like this leaves us several options. We can replace the
two routers with a single bigger one connected to both clouds; the host will
then send all traffic to that one router and doesn’t receive any redirects. We
may decide to turn the server into a router; doing so will normally reduce
the number of routing table entries quite significantly because it replaces host
routes from ICMPv6 redirects with network routes. We may also decide to
connect both routers to both network clouds; that will stop the routers from
sending ICMPv6 redirects because they can forward packets to any destina-
tion. And finally, we may want to separate the routers from the server with
an additional router that takes care of the routing on behalf of the server.

7.7.6 Inconsistent Prefix Advertisements

It is possible that multiple routers in the same subnet advertise different
network prefixes. This is perfectly legal and in some situations actually quite
useful. But it may lead to a phenomenon that is particularly surprising when
dynamic routing is also involved.

Figure 7.6 shows such a situation. Both routers advertise different network
prefixes to the middle subnet and run a dynamic routing protocol between
each other. The left host can ping the right host thanks to dynamic routing.

Left Subnet Middle Subnet Right Subnet

Left
Router

Right
Router

Left
Host

Middle
Host

Right
Host

Fig. 7.6. Inconsistent prefix advertisements

The left host can also ping the middle host if it sends it to the address with
the prefix that the middle host obtained from the left router. But it can’t
ping the middle host if it uses the prefix from the right router.

Why? When the right router sends a routing announcement to the middle
subnet, it doesn’t send its entire routing table but first removes all routes
that pass through the middle subnet. After all, the routers connected to
the middle subnet should already know about them. So the left router will
never learn about the network prefix that the right router announces to the
middle subnet—remember, routers don’t listen to router advertisements. As
a consequence, the left router doesn’t know how to forward packets sent to
addresses with the prefix announced by the right router.

Things get even more surprising if we connect both routers to a backbone
network as in figure 7.7. In this case, the left host can reach the middle host,

7.7 Routing Architecture Strategies 117

Left Subnet Middle Subnet Right Subnet

Backbone

Left
Router

Right
Router

Left
Host

Middle
Host

Right
Host

Fig. 7.7. Inconsistent prefix advertisements with a backbone subnet

but the packet travels in an unanticipated and inefficient way: Instead of
passing from the left router through the middle subnet to the middle host,
it goes through the backbone to the right router and only then through the
middle subnet to the middle host.

Now what happened there? The right router sends its routing announce-
ments to the middle subnet as before, so the left router still doesn’t know
about the additional prefix in the middle subnet. But the right router also
sends an announcement to the backbone. This announcement contains a route
to the prefix because it is sent to an interface that is different than the one
with the announced prefix. Now the left router learns a route to the prefix
that passes through the backbone.

When we bring in DNS, then the situation can get even more confusing.
If the middle host has a DNS entry for both addresses, then the name server
will usually provide the left host with them in a randomized order. In half
the cases the connection will work as expected because the left host sends
its packets to the address with the prefix obtained from the left router. In
half the cases however it will send the packets to the “bad” prefix, causing
the effects as mentioned above. Beyond that the address selection algorithms
we’ll investigate in section 16.4 might also interfere, making problems with
inconsistent prefix configurations even more difficult to understand and fix.

There is an obvious conclusion from this surprising behaviour: Keep the
network prefixes on all routers in a subnet consistent. As long as you do so,
none of these problems will happen. And if they still do happen, check your
router configurations for mistyped addresses.

7.7.7 Security Aspects

Dynamic routing is sometimes considered insecure because an attacker may
manipulate a router’s routing table using bogus routing announcements. If
this an issue to you there is effectively only one option to investigate.

118 7 Unicast Routing Basics

Consider a two-tiered network architecture as in figure 7.8. At the bot-
tom tier all hosts are connected to “leaf networks” that only provide direct
connectivity between these hosts and to the attached “leaf” routers. Routing
in these leaf networks is limited to autoconfiguration and ICMPv6 redirects.

Leaf Subnet Leaf Subnet Leaf Subnet Leaf Subnet Leaf Subnet

Backbone

Leaf
Router

Leaf
Router

Leaf
Router

Security
Perimeter

Fig. 7.8. Two-tiered perimeter security topology

Leaf routers won’t accept routing announcements from these networks. The
top tier consists of “backbone networks”. Only routers are permitted to con-
nect to the backbone networks and all dynamic routing happens there. The
backbone is considered secure and is possibly protected by packet filters on
the leaf routers. All routers connected to the backbone are considered trust-
worthy, so dynamic routing doesn’t need authentication.

So what’s wrong with authentication? Well, when RIPv2 was turned into
RIPng, people decided to drop the authentication features in RIPv2 and use
IPsec for authentication instead. Unfortunately, IPsec implementations today
don’t support multicast authentication, which leaves us in the unfortunate
situation that we can’t authenticate a RIPng packet.

7.8 Mixing Static and Dynamic Routing

Mixing static and dynamic routing can be tricky; in many cases it isn’t worth
the trouble. But there are cases where we need to do it anyway.

If we use dynamic routing but need to connect to another network that
doesn’t (or vice versa) we will need to set up some “border router” that
supports dynamic routing on some interfaces and static routes on others. The
same is necessary if we use different routing protocols in different subnets.

Maybe we don’t want to use dynamic routing in some networks for security
reasons; for example we may have a test environment where inexperienced ju-

7.8 Mixing Static and Dynamic Routing 119

nior network administrators are getting to grips with dynamic routing. Again
we’ll want a “border router” to deal with the situation.

Maybe we cleaned up our network topology except for one particularly
nasty kludge that we just can’t get rid of right now. We may want to use
dynamic routing everywhere except for that kludge.

Finally, we may just feel uncomfortable with an all-or-nothing decision
that can’t be rolled back in a gradual manner. Personally, this is the most
compelling reason to me.

If we need to mix static and dynamic routing, or different dynamic routing
protocols, it is best to keep the number of “mixed-mode” or “border” routers
as small as possible. It will simplify our work and generally improve the
reliability of our network.

We need to find ways to configure static routes on routers that also do
dynamic routing. These static routes must be announced through dynamic
routing so other dynamic routers will learn about them without being stati-
cally configured themselves. How this is done again depends on the particular
Unix.

Debian Sarge/Quagga First we convince the ripng daemon to announce
static routes. We need to add the line

/etc/quagga/ripngd.conf

redistribute static

to ripngd.conf. Then we add the actual static routes to zebra.conf accord-
ing to the pattern

/etc/quagga/zebra.conf

! Destination Gateway

ipv6 route 2001:db8:f00f::/48 2001:db8:fedc:1::1

Then we restart the Quagga daemons. That should configure the route in the
local routing table and announce the route via dynamic routing.

If you mistype the gateway address in the ipv6 route statement, the
address won’t be added to your static routing table. So make sure to check
the routing table after you add a route this way.

FreeBSD 6.1 First we convince the route6d to announce the static routes
it finds in the kernel. To do so we need to add an option -s to its invocation
in /etc/rc.conf:

/etc/rc.conf

ipv6_router_flags="-s"

Then we add the routes just as any ordinary route. The route6d daemon will
discover and announce them.

Solaris 10 There is no documented way to make in.ripngd propagate sta-
tically configured routes. 58

120 7 Unicast Routing Basics

7.9 Inside IPv6: Maximum Transmission Unit (MTU)
Improvements

A largely unnoticed improvement of IPv6 over IPv4 deals with the way it
handles large packets.

Link-layer technologies usually limit the maximum size of a link-layer
frame. This maximum size differs between link-layer technologies and may
even be configurable.

From the link layer’s maximum frame size the maximum transmission unit
(MTU) of a given subnet can be calculated. The MTU defines the maximum
size that an IP packet may have to be sent across a given subnet in a single
frame. If a packet is larger than the MTU, then it is split into multiple
fragments that are sent in separate frames.

With IPv4 this is traditionally done in a suboptimal way: If a router re-
ceives a large packet through a subnet with a large MTU and then attempts to
forward it through another subnet with a smaller MTU, then it will fragment
the packet. If another router down the line forwards these fragments through
a subnet with an even smaller MTU, then it will fragment the packets again.
Since the sender never learns about the fragmentation it will continue to send
these awkwardly large packets. Traditional implementations work like this.

Less traditional IPv4 implementations allow the sender to set a flag in
the IP header to change this behaviour. If the don’t fragment flag is set,
then a router may send an ICMPv6 packet too big notification to the sender
instead of fragmenting the packet. The sender can then keep track of the path
MTU, the minimum of all MTUs between the sender and receiver of a packet,
and send fragments at the largest possible size that doesn’t get fragmented
again. Older routers will however ignore that flag and still fragment packets
themselves.

IPv6 always uses this path MTU (PMTU) discovery mechanism; routers
never fragment packets themselves. This reduces traffic overhead due to re-
peated fragmentation, optimizes the packet size and and count, and takes
some load from the routers involved.

Beyond that, IPv4 MTUs could be ridiculously small—as low as 296 bytes.
With IPv6, the MTU of any subnet is at least as large as 1280 bytes.

RFC 1981 [87] and RFC 2460 [24, section 5] contain the definitive specifi-
cations.

7.10 Packet Filter Considerations

Routing makes it necessary to reconsider the filter configurations we have
developed so far.

7.10 Packet Filter Considerations 121

We need to revise our anti-spoofing filter rules on nodes with multiple
interfaces in general and to make filtering routers deal with packets they are
expected to forward.

On hosts as well as routers we may need to permit ICMPv6 redirects in
restricted ways; this isn’t exactly easy, so we should try to set up a network
topology that avoids redirects.

Using packet filters together with dynamic routing is more difficult. There
is no universal solution strategy, but with an appropriate network topology
packet filters and dynamic routing cooperate at least to some degree.

7.10.1 Source Address Validation (Ingress Filtering)

In section 4.7.5 we have set up some preliminary filter rules to ensure that
incoming packets arrive on the “correct” interface. So far we have permitted
all traffic from “remote” networks to arrive on any interface, which was fine
for a single subnet without forwarding routers.

As soon as we actually route traffic this is insufficient. We need to make
sure that traffic from other subnets arrives on the correct interface on all nodes
with multiple interfaces, both routers and multi-homed hosts.

Debian Sarge In section 4.7.5 the DESPOOF chain ends with a ret DESPOOF

line. We can now replace it with a set of more restrictive rules, tying network
prefixes to specific interfaces or sets of interfaces, like

/etc/ip6tables.sh

drop DESPOOF -s 2001:db8:f00::/48 -i ’!’ eth17

ret DESPOOF -s 2001:db8:f00::/48 -i eth17

[. . .]
drop DESPOOF -s 2001:db8::/32 -i ’!’ eth3

ret DESPOOF -s 2001:db8::/32 -i eth3

[. . .]
ret DESPOOF -s 2000::/3 -i eth2

drop DESPOOF

to allow traffic from 2001:db8:f00::/48 from interface eth17 only, from
other addresses with a 2001:db8::/32 prefix from interface eth3 only and
from other globally routed addresses from interface eth2 only.

FreeBSD 6.1 In section 4.7.5 we have used a set of rules to mark packets
with a tag GOODSRC if their source address was acceptable. If we replace the
rule

/etc/pf.conf

block in inet6 from 2000::/3 to any tag GOODSRC

in /etc/pf.conf with some more specific rules and immediately drop traffic
coming in on the wrong interface, then we can filter by proper interfaces like

122 7 Unicast Routing Basics

/etc/pf.conf

block in on lnc17 inet6 from 2001:db8:f00::/48 to any tag GOODSRC

block in quick inet6 from 2001:db8:f00::/48 to any ! tagged GOODSRC

[. . .]
block in on lnc3 inet6 from 2001:db8::/32 to any tag GOODSRC

block in quick inet6 from 2001:db8::/32 to any ! tagged GOODSRC

[. . .]
block in on lnc2 inet6 from 2000::/3 to any tag GOODSRC

to allow traffic from 2001:db8:f00::/48 from interface lnc17 only, from
other addresses with a 2001:db8::/32 prefix from interface lnc3 only and
from other globally routed addresses from interface lnc2 only. 59

With both Debian and FreeBSD we should start with the longest prefixes
and then work towards shorter prefixes, possibly all the way to 2000::/3 on
our upstream interface. It is often possible to reduce the number of rules by
using a single rule per prefix—but in the general case, two rules according to
the pattern above are necessary.

If we have a redundant network, some addresses may come in from multiple
interfaces. In that case, we need to add a line for every interface and prefix
combination we want to let through. Otherwise, redundant networks don’t
pose any additional problems.

7.10.2 Forwarding Filter Rules

Our filter configurations so far only allow traffic either from or to the node
running the filter. But on routers we also need to allow packets to be for-
warded.

Debian Sarge The ip6tables filter uses a distinct FORWARD chain for pack-
ets that must be forwarded. This approach is unusual but in many cases very
useful. To set up a filter on a forwarding router we run forward traffic through
some of the chains we have already defined. The ICMPv6 rules should be more
restrictive and only allow traffic that actually needs to be routed; neighbor
and router discovery as well as multicast group management packets are in-
herently non-routeable and should be blocked. A minimal configuration that
can be appended at the end of the filter configuration we have set up so far
might look like this:

/etc/ip6tables.sh

call FORWARD SANITIZE

call FORWARD DESPOOF

call FORWARD CHECKSRC

call FORWARD CHECKDST

[Continued on next page]

7.10 Packet Filter Considerations 123

/etc/ip6tables.sh

[Continued from previous page]
chain ICMPFWD

accept ICMPFWD -p icmpv6 --icmpv6-type destination-unreachable

accept ICMPFWD -p icmpv6 --icmpv6-type packet-too-big

accept ICMPFWD -p icmpv6 --icmpv6-type ttl-exceeded

accept ICMPFWD -p icmpv6 --icmpv6-type parameter-problem

drop ICMPFWD

drop FORWARD

Beyond that we can add more ICMPv6 types like echo request/reply, and
TCP and UDP traffic as we have done for the INPUT chain before.

FreeBSD 6.1 Forwarding doesn’t really affect the packet filter configuration
except that we need to add rules to allow the traffic we want.

Stateful filtering establishes two states, one on either interface. So to allow
SSH traffic from 2001:db8:fedc:1::/48 to 2001:db8:fedc:2::/48, we need
to add a rule like

/etc/pf.conf

pass quick inet6 proto tcp from 2001:db8:fedc:1::/48 \

to 2001:db8:fedc:2::/48 port 22 \

flags S/SA keep state

without an in modifier. If we only allowed this traffic in, the initial SYN
packet wouldn’t be allowed to leave our router. 60

7.10.3 Dealing with ICMPv6 Redirects

As soon as multiple routers with different routes are attached to the same
subnet as some hosts, ICMPv6 redirects can occur. If we have such a network
topology and need to configure packet filters, we have two choices: Either
change the network topology to avoid ICMPv6 redirects or configure our filters
to permit them.

Generally, allowing ICMPv6 redirects in security-critical environments is
not a particularly good idea, so changing the network topology is actually the
preferred approach in this situation. But if we need to filter redirects, doing
so is quite straightforward: We just add rules for outgoing redirects on routers
and rules for incoming redirects on hosts.

7.10.4 Packet Filters and Dynamic Routing

Configuring packet filters in an environment that relies on dynamic routing is
tricky. While it is straightforward to allow RIPng traffic (on port 521/UDP,
as explained in section 7.6), dynamically changing routes have some nasty
side effects.

124 7 Unicast Routing Basics

If we want to prevent spoofing, we need to know which networks are reach-
able through which interfaces. If dynamic routing may cause traffic from a
given network to arrive through multiple paths, we need to allow traffic from
this network from all these interfaces. Doing so may open up the packet filter
up to the point that reliable source spoofing prevention becomes impossible.

If we use stateful filters, and dynamic routing may cause the traffic be-
longing to a connection to be routed through multiple filtering routers, then
we may break the connection because the multiple routers can’t track the
connection. In some cases it may be possible to use whatever high availability
mechanisms are available for our packet filters, but generally this makes the
filter more complicated. Alternatively, some filters allow a more “relaxed”
style of connection tracking, but to some degree this approach defies the very
idea of stateful filtering.

In section 7.7.7 we have already seen how we can design a network with
a two-tiered topology with perimeter security. If we turn the leaf routers
in figure 7.8 into packet filters, then we can safely use dynamic routing on
their upper interfaces into the backbone only while we filter all the traffic on
their lower interfaces into the leaf subnets. With such a topology we can use
the advantages of dynamic routing even in a security-sensitive environment.
Depending on the packet filter implementations we use it may even be possible
to make the leaf routers redundant by synchronizing their states using some
high availability mechanism.

Part II

IPv4/IPv6 Interoperation

8

Interoperation Concepts

As we have already seen in section 1.3, IPv4 and IPv6 operate in parallel
without any fundamental problems. But what if we have two nodes that want
to communicate with each other but one only supports IPv4 while the other
supports only IPv6?

There is no all-embracing solution to this problem. But there are some
well-established strategies that serve the purpose in many important cases.

8.1 Dual Stack Configuration and Operation

All interoperation solutions are based on making at least some nodes dual
stacked so they support both IPv4 and IPv6. In this section we consider a
few pitfalls we may encounter when setting up such a node.

Configuring a node for dual stack operation is generally quite simple. IPv4
and IPv6 work independently with the exception that an ifconfig up on
most Unixen enables both IPv4 and IPv6 at the same time.

Solaris 10 Interfaces are independently plumbed, configured and enabled.
61

It is perfectly reasonable to have both A and AAAA records for the same
name in the DNS. So if our web server www.example.com is dual-stacked, a
resource record set like

example.com.fwd

www.example.com. A 192.0.2.80

AAAA 2001:db8:fedc:80::80

is not only technically legal but generally reasonable.

128 8 Interoperation Concepts

8.2 Interoperation Problems

At least it would be if there weren’t two occasional problems: According to
RFC 4074 [88] there is a diminishing number of DNS servers in the wild that
return an incorrect error code if we ask for an AAAA record and only an A

record exists and some sloppily IPv6-enabled applications don’t attempt to
use all addresses that a DNS lookup yields but only the first one. Fortunately,
the broken DNS servers are quickly getting updated to behave correctly. The
number of badly ported applications has never been too large and knowledge
on how to do the modifications properly is quickly spreading in the developer
community.

But if we want to make really sure that these problems don’t affect us, we
should consider using different DNS names for IPv4 and IPv6 addresses.

A more serious problem with dual-stacked systems is non-technical: When
we set up nodes to run dual-stacked, then we don’t immediately know if they
communicate using IPv4 or IPv6. Now if something breaks we may acciden-
tially search for the problem in the wrong place—if the problem happens on
the IPv4 side we will look for it on the IPv6 side and vice versa.

To deal with this it takes a bit of experience and preferably a packet sniffer
to watch the traffic that is causing the problem. Don’t try to outsmart the
address selection algorithms; they are reasonably complex and you are best
advised to assume that they do a good job. If you really want to know how
they work, take a look at section 16.4.

8.3 Dual Stack Everything

When we first try to deploy IPv6 in a production environment, chances are
that we can’t make any nodes IPv6-only just yet. Instead, all we can do is
make everything dual-stacked, watch what “legacy” things still need IPv4,
sort them out and eventually, when we have checked that IPv4 simply isn’t
used anymore, disable IPv4 support at least on the majority of our nodes.

If we manage to do this in a gradual way, slowly deploying IPv6 in small
sections of our network environment, this is a quite manageable. Just remem-
ber about the problem of barking up the wrong tree mentioned above.

In the long run, permanently dual stacking all machines in our environ-
ment won’t win us anything but extra work. With some legacy things still
requiring IPv4 support, the next step is to make our servers dual-stacked and
the majority of our clients either IPv4 only or IPv6 only.

8.4 Dual Stack Servers Only

In general, making a server support both IPv4 and IPv6 is straightforward.
We configure both stacks on it, add both A and AAAA records to the DNS, and
if at all necessary make the service listen on both IPv4 and IPv6.

8.6 Packet Filter Considerations 129

The archetypical dual-stacked service is NFS. If we make an NFS server
dual-stacked, then IPv4-only, IPv6-only and dual-stacked clients can use it
without problems.

In fact, this is about as far as we can get with NFS. If we have an IPv6-
only NFS client and want to connect to an IPv4-only NFS server, we are out
of luck. So if we wanted to use an IPv4-only NFS server from the Internet we
had no choice but to stick with IPv4.

Fortunately, many of the protocols commonly used on the Internet don’t
have this limitation. The next few sections explain what we can do to make
IPv6-only clients talk to IPv4-only servers and vice versa.

8.5 Connecting to Foreign IPv4-only Servers

When we need to provide access to some IPv4-only servers that are beyond
our administrative control, we have two options: Keeping the clients dual-
stacked will work but is undesirable. The preferred alternative are devices
that map between IPv4 and IPv6 somehow.

These devices can implement the mapping either within the application
layer or the network layer. The former are called application level gateways
(ALG), proxies or a variety of other names depending on the particular service
that is translated. They are often quite simple to set up and configure; we
take a look at them in the following chapter 9.

It is also possible to do the mapping within IP. This strategy is somewhat
similar to NAT, but noticeably more complex. For services that are not proxy-
friendly, using this protocol translation is usually the only viable solution, so
we deal with it in chapter 10.

8.6 Packet Filter Considerations

Generally packet filters can deal with IPv4 and IPv6 independently of each
other. In some cases there are actually independent filters for both protocol
families, so dealing with both together requires some work.

Debian Sarge The packet filters are entirely independent of each other:
iptables filters only IPv4 and ip6tables only IPv6. Consequently they
don’t share any configuration. But since both are configured using individual
commands it is possible to put their configurations into the same shell script.

FreeBSD 6.1 A rule will apply to IPv4 as well as IPv6 unless we explicitly
restrict the protocol family using inet or inet6. 62

On routers I usually keep IPv4 and IPv6 separate, because the filter rules
are highly dependent on the network topology and the general network con-
figurations are independent of each other. On a dual-stacked hosts it is some-

130 8 Interoperation Concepts

times more adequate to configure IPv4 and IPv6 together, especially if the
same services are used or provided for both IPv4 and IPv6.

Beyond these configuration technicalities there is a fundamental architec-
tural aspect to consider. While it is possible to use both IPv4 and IPv6 in the
same subnet, doing so makes packet filter configurations more complex and
confusing. Using separate IPv4-only and IPv6-only subnets is slightly more
expensive but generally simplifies packet filtering. Since there is little experi-
ence with IPv6 packet filter configurations, simplifying the filter configuration
is extremely helpful to avoid mistakes.

9

Application Level Gateways

The preferred means to bridge the IPv4–IPv6 gap is an intermediate, dual-
stacked machine that provides the connection at the application layer. In
many firewall setups, such services already exist for security reasons; they are
called application level gateways (ALG). If we make the machine running the
gateway dual-stacked, then we have already solved the problem.

All we need are application level gateways for all the services we want to
provide for. Depending on the particular protocol, these gateways are called
proxies, gateways, relays, gatekeepers, brokers or whatever else.

9.1 Domain Name Service (DNS)

DNS “proxies” are called “forwarders”. If we install our customary BIND
on a dual-stacked host and configure it as a standard forwarder, it will serve
perfectly well as a proxy between IP versions.

Things will get complicated if we have an IPv4-only name server and
IPv6-only clients (or vice versa) and we want the clients to use dynamic DNS
updates to update their DNS entries. In theory we might use a dual-stacked
secondary DNS server (running a recent version of BIND) and send our DNS
updates there, but in practice this setup is tricky at best. In practice, the
preferred strategy is to make the primary name server dual-stacked.

9.2 Network Time Protocol (NTP)

The network time protocol inherently supports the concept of proxies; time
servers pass their time on to other time servers, thus spreading proper time
information all over the net.

In theory, there is one limitation: NTP tracks the number of hops from
the reference clock. This metric, called stratum, can’t be larger than 15. In

132 9 Application Level Gateways

practice, if we ever reached this limit, we should reconsider our entire NTP
setup.

Another, potentially more relevant problem is the fact that every addi-
tional hop makes time synchronization less precise. But again, if this was
our problem we should reconsider our NTP setup, get a few GPS receivers,
connect some dual-stacked “primary” time servers to them and from there
onwards distribute the time information through our net.

9.3 Syslog

It is perfectly possible to make a “loghost” forward log events from a client
to another, higher-level “loghost”. So any syslogd serves as a proxy if we
configure it to forward all events to another log server.

In practice, this can be vitally important: If we use monitoring software
that doesn’t support IPv6 and can’t afford to drop it in favour of some-
thing IPv6-enabled, a syslog gateway may save the day. This scenario usually
happens when the monitoring software in place is an expensive commercial
product that has been severely customized to the local needs.

Configuring a syslog proxy it is essential to make sure that there are no
forwarding loops; otherwise, the setup is straightforward.

9.4 Simple Mail Transfer Protocol (SMTP)

The archetypical application level gateway is an SMTP relay. All mail transfer
agents support the relaying of e-mails on behalf of other machines, so all mail
transfer agents that support IPv6 can be used as gateways.

The only issue we need to be aware of is not directly IPv6-specific: We
must make sure that our gateway can’t be abused as an “open relay” to send
spam to other machines. Since the access control mechanisms with the most
common mail transfer agents are capable of handling both IPv4 and IPv6, this
shouldn’t pose any challenges beyond those of an “ordinary” configuration in
an IPv4-only environment.

9.5 Hypertext Transfer Protocol (HTTP)

We can use both the Apache2 proxy module and ffproxy to set up a proxy
for HTTP and HTTPS. As with the mail relays, we only need to ensure that
the access controls are configured so as to prevent unauthorized use.

9.6 Packet Filter Considerations 133

9.6 Packet Filter Considerations

Setting up a packet filter on an application gateway doesn’t pose any parti-
cular challenges; we just need to open the necessary ports for both IPv4 and
IPv6.

Gateways are usually IPv6 hosts, not routers, so they should have only a
single IPv6 interface. If we want them to connect to separate IPv4-only and
IPv6-only subnets, then we should keep in mind that many Unixen don’t let
us enable IPv6 on individual interfaces. So we should block all IPv6 traffic on
interfaces that connect to an IPv4-only interface; otherwise we risk attacks
using IPv6 link-local addresses to circumvent the IPv4 filter rules on these
interfaces. Similarly, we should block IPv4 traffic on the interfaces connected
to IPv6-only subnets.

10

Protocol Translation

We have made all the services in chapter 6 interoperate with IPv4 except for
the Secure Shell, which isn’t proxyable1. We need to use an alternate strategy
for it: We translate IPv6 packets into IPv4 packets and vice versa.

10.1 Protocol Translation Concepts

The translation between IPv4 and IPv6 at the network layer is called pro-
tocol translation. In many respects it is closely related to network address
translation (NAT). But instead of rewriting IP addresses and port numbers
it replaces entire IP headers.

Similar to NAT, a protocol translator needs to keep state; this makes it
difficult at best to make the translator redundant. If the protocol translator
fails or the routing changes to send the traffic through another translator, all
open connections will die.

Again similar to NAT, if the protocol communicates IP addresses in the
data stream, protocol translation won’t work unless some application-specific
translation is included. The archetypical NAT-incompatible protocol is FTP.
It doesn’t traverse NAT, so it can’t work with protocol translation, either.

Protocol translation is far more complex than NAT. Not only does it re-
place entire IP headers, but it needs to handle DNS translation as well: If
an IPv6-only client wants to connect to an IPv4-only server it will only ask
the DNS for IPv6 addresses, or AAAA records. These requests must be inter-
cepted, translated into A record queries, and the answers from the real name

1 As a workaround we might set up a dual-stacked machine that users log in to so
from there they can log in to the final destination. But in many situations such an
intermediate machine poses an undesirable security risk. Aside from that, using
port forwarding and some other advanced features of the Secure Shell with this
is tedious at best.

136 10 Protocol Translation

server must be translated into matching AAAA records that are then sent to
the client. PTR records must also be treated like this.

There are two different specifications that have been implemented: Net-
work address translation/protocol translation (NAT-PT) as of RFC 2766 [111]
and transport relay translation (TRT) as of RFC 3142 [74]. Both are based
on a specification from RFC 2765 [94] called stateless IP/ICMP translation
(SIIT) which has never been implemented by itself but defines the precise
algorithms for transforming the IP packets.

The primary difference between NAT-PT and TRT is the way they deal
with the DNS translation. NAT-PT does the translation by itself. This makes
it possible to set up the translation bindings before the actual connection
is established, so it is even possible to connect from an IPv4 client to an
IPv6 server if we have a sufficiently large IPv4 address pool to use for the
translation. Then again, this makes NAT-PT a fairly complex, monolithic
entity that is difficult to implement properly.

TRT doesn’t do the DNS translation itself but leaves it to a translating
DNS forwarder. This makes it less complex than NAT-PT but doesn’t allow
connections from IPv4 to IPv6.

At the time of this writing, there is no working NAT-PT implementation
for Unix. Some time ago a project worked on a Linux implementation but it
never became stable enough for real use.

The BSD stack brings a TRT implementation called faith. Its major
drawbacks are that it doesn’t run entirely in kernel space, that the associ-
ated daemon must be run on a fixed port number and that it only supports
TCP; neither UDP nor ICMPv6 (including ping) work. In many cases these
limitations are acceptable; if not, Cisco has implemented NAT-PT for their
IOS.

Another Linux project, pTRTd, tried to implement TRT but again, it
didn’t get beyond the experimental stage and has apparently been abandoned.

Solaris doesn’t support protocol translation at all.

10.2 Setting Up a Protocol Translator

Figure 10.1 shows a simple test setup. The real name server has a zone
example.com with an entry

example.com.fwd

v4only.example.com. A 192.0.2.2

on the DNS server. We use the prefix 2001:db8:fedc:4444:4444:4444::/96

to map the IPv4 address space into IPv6. Our goal is to connect from the
v6-only client to the v4-only server via ssh.

First we set up the protocol translation as such on the translator.

10.2 Setting Up a Protocol Translator 137

2001:db8:fedc:6666::/64, 192.0.2.22/24

v6-only
Client

Protocol
Translator

real
DNS

192.0.2.1

v4-only
Server

192.0.2.2

Fig. 10.1. A protocol translation test setup

FreeBSD 6.1 The TRT implementation consists of a kernel-side interface
called faith and a matching userland daemon faithd. Together they provide
the translation between IPv4 and IPv6. Additionally we need the trick-or-
treat daemon totd to translate DNS records.

We first configure the protocol translator with an IPv4 address 192.0.2.3.
Then we set it up as a single-legged advertising router with an IPv6 address
2001:db8:fedc:6666::1 so the client will route its IPv6 traffic through it
and it has a fixed IPv6 address that we can configure the client’s resolver
with.

In /etc/rc.conf we configure the TRT prefix with a line

/etc/rc.conf

ipv6_faith_prefix="2001:db8:fedc:4444:4444:4444::"

This automatically enables the kernel side of the TRT implementation after
the next reboot. Then we need to start the userland daemon to do the actual
translation. To enable TRT translation for the ssh we first need to disable
any running sshd. In the simplest case, we can then run

faithd ssh

either on the command line or in /etc/rc.local to translate every incoming
connection on the SSH port, 22/TCP. But if we want to be able to connect to
the translator machine itself, we need to tell it what to do when a connection
to its own mapped address comes in; in this case we can start the sshd as if
it was started by the inetd:

faithd ssh /usr/sbin/sshd sshd -i

Finally, if we run an inetd on the translator node, we may let it start the
faithd instead with a line like this in /etc/inetd.conf:

/etc/inetd.conf

ssh stream tcp6/faith nowait root /usr/sbin/faithd /usr/sbin/sshd -i

This is particularly useful if we want to provide translation on a larger number
of port numbers since in that case we only run a single inetd process instead
of separate faithd processes for all the port numbers.

138 10 Protocol Translation

At this point it should be possible to connect from the client to the server
if we specify the mapped IPv6 address as the destination:

ssh -v 2001:db8:fedc:4444:4444:4444:192.0.2.2

In case this doesn’t work, we can usually find the problem like this:
� On the translator, first check the IPv4 configuration.
� Now try to ping the v4-only server from the translator via IPv4, spec-

ifying its IPv4 address.
� Now do the same with the DNS name instead of the address.
� SSH from the translator to the v4-only server.
� Check that the faith0 interface is up and running on the translator.
� On the translator, check with netstat -rnf inet6 that all traffic to

the translation prefix is routed through the faith0 interface.
� Again on the translator, check that the IPv6 interfaces are up, running

and configured as expected.
� Check with sysctl net.inet6.ip6.forwarding that IPv6 forwarding

is enabled.
� Check that the rtadvd is running.
� Use sockstat to check that either the faithd or inetd is listening on

the ssh port (22).
� Use ssh -v 2001:db8:fedc:4444:4444:4444:192.0.2.2 to see if

you can reach the v4-only server via IPv6.
� Check the v6-only client. It should have its interface properly config-

ured and the translator as its only default route.
� Finally, use ssh 2001:db8:fedc:4444:4444:4444:192.0.2.2 from

the client to see if you can reach the v4-only server via IPv6.
Now we need to address the DNS issue. The DNS translation is done by the
trick-or-treat daemon, totd. It is available from the ports/packages collection.
We tell it the translation prefix and the address of the real DNS server in
/usr/local/etc/totd.conf:

/usr/local/etc/totd.conf

prefix 2001:db8:fedc:4444:4444:4444::

forwarder 192.0.2.1

and set

/etc/rc.conf

totd_enable=YES

in /etc/rc.conf to start it on boot. Now we either reboot or run

/usr/local/etc/rc.d/totd.sh start

to start the totd daemon. On the client we change /etc/resolv.conf to
refer to the translator node as our name server:

10.3 Operational Issues 139

/etc/resolv.conf

domain example.com

nameserver 2001:db8:fedc:6666::1

At this point it should be possible to connect from the v6-only client to the
v4-only server using its DNS name. If there are problems, consider these
checks:

� On the translator, check that the totd is actually running.
� Check that it listens on the DNS port (53).
� Check that it provides the properly translated data: Run

dig @::1 v4only.example.com. any

on the translator. It must return both the original IPv4 address and the
translated IPv6 address 2001:db8:fedc:4444:4444:4444:c000:202

(2001:db8:fedc:4444:4444:4444:192.0.2.2).
� Now run dig again on the client. Omit the @::1; that way dig will ask

the name server configured in /etc/resolv.conf, which should be the
totd on the translator. The result should be the same as the previous
run on the translator node.

� Finally, do a ssh -v v4only on the client.
From this point on, all we need to do to enable protocol translation for addi-
tional port numbers is to start additional faithd instances for the ports; we
can do so either directly or using the inetd. 63

10.3 Operational Issues

A first problem at least with the faith implementation are misleading error
messages: If we try to ssh to a non-existent machine, we won’t get a “host
unreachable” error or such. Instead, the faithd closes the connection when
it can’t reach the destination machine. Additionally, ping doesn’t work with
faith. Both of these phenomena together are extremely misleading even if
we know about the setup; a semi-clued user base will quite likely trigger a
large number of false alarms if this happens.

Since the protocol translator needs to keep state of all translated connec-
tions, it doesn’t lend itself to redundant setups. With the faith implementa-
tion it is impossible to make a translator redundant. Furthermore, all traffic
needs to be routed through the translator, so if we use dynamic routing we
need to hardwire some route to the translation prefix to the translator.

But the biggest issue with protocol translation is the fact that it interferes
with the DNS; if it causes any problems at all, it will effectively render all its
DNS clients unusable. And there is another problem with the totd:

140 10 Protocol Translation

The totd as of version 1.5.1 has an annoying bug: It doesn’t al-
ways send a reply from the IP address that it received the request
from. If the totd server has multiple routable addresses configured

?
on the particular interface, the client will ignore the replies because they don’t
originate from the expected source address. To work around this problem we
need to make sure that the translator machine has only a single routable IPv6
address on its interface.

If performance becomes an issue, it is desirable to split the load over
multiple machines. It is straightforward to separate the totd daemon from
the faith translator.

It is even possible to configure multiple faith machines with separate pre-
fixes and then configure all the prefixes with the totd daemon to distribute
the load over multiple faith translators. The totd will then return an ad-
dress with a different prefix on every request. If one of the faith translators
becomes unavailable, this will cause those connection attempts to fail that
are directed to the prefix of the failing translator. In consequence, the more
faith translators exist, the less reliably will translation work.

All these issues show that protocol translation, at least with the imple-
mentation we have today, is only a last resort transitional measure and should
be avoided when possible.

10.4 Packet Filter Considerations

The packet filter configuration on a protocol translator is quite similar to
that of an application level gateway: There is an IPv6 interface that accepts
incoming connections and an IPv4 interface, which doesn’t have to be different
from the IPv6 interface, from which outgoing connections are established.

The difference between a protocol translator and a gateway is that a pro-
tocol translator is a router; it forwards packets to the entire translation prefix.
So we need filter rules appropriate for a router, not a host.

FreeBSD 6.1 Filtering on the translation pseudo-interface is unnecessary
since all traffic passing through it can be treated on the physical interfaces
that it passes through. 64

In theory it is possible to set up a protocol translator on a “real” router;
but doing so tends to make the filter configuration more complex and error-
prone. So I personally prefer to keep the protocol translation on a dedicated
machine with one or two interfaces.

Part III

Tunnels and Related Topics

11

Tunnel Basics

If we want to connect to the Internet6 but our decidedly IPv6-unfriendly
Internet service provider refuses to offer us any direct IPv6 connectivity, then
we will most likely use a tunnel to carry our IPv6 traffic over our existing
IPv4 connectivity.

But tunneling is a far more versatile concept. It can be used to send traffic
over “incompatible” networks, to provide a static IP address to a node or net-
work with changing connectivity, to deal with certain performance problems
and to set up redundant network connectivity.

11.1 Concepts and Terminology

A tunnel is a mechanism that allows a network layer protocol to use another
protocol that is not itself a link-layer protocol as its link-layer connection. In
many cases, tunnels are used to connect networks using one network layer
protocol through an intermediate network using another network layer proto-
col.

The network layer protocol used as the link-layer protocol is called the
outer protocol and the protocol used between the end points is called the
inner protocol. With the common scenario that we need to pass IPv6 traffic
over an IPv4-only intermediate network, IPv4 would be the outer and IPv6
the inner protocol.

A tunnel node has an outer protocol configured as a link-layer protocol
for an inner protocol. A tunnel host provides no forwarding functionality for
the inner protocol while a tunnel router does. Figure 11.1 shows a tunnel
environment with IPv4 as the outer and IPv6 as the inner protocol. The
“horseshoe” symbol denotes the tunnel nodes.

To understand how a tunnel works, consider the easiest case first: The two
tunnel hosts want to communicate using the inner (IPv6) protocol but are only
reachable from each other using the outer (IPv4) protocol. An application on

144 11 Tunnel Basics

IPv4-only net

tunnel
host

tunnel
host

left IPv6-only net

tunnel
router

right IPv6-only net

tunnel
router

Fig. 11.1. A tunnel environment connecting IPv6 over IPv4

the left tunnel host wants to send some data to another application on the
right tunnel host using IPv6. It sends the data through the transport layer to
its IPv6 network layer. From there, an IPv6 packet is sent to the apparent link
layer; it is put inside an IPv4 packet to the IPv4 address of the right tunnel
host and then sent through the IPv4-only net. All intermediate routers will
just consider the packet an ordinary IPv4 packet to the right tunnel host and
forward it there. The right tunnel host finally receives the packet, recognizes
its own IPv4 address as the destination, and unwraps the packet. It finds the
IPv6 packet inside and passes it through its IPv6 and TCP implementation
to the application.

Tunnel routers behave similarly, but provide tunneling on behalf of other
nodes. Assume that a node in the left IPv6-only net wants to send a packet to
another node in the right IPv6-only net. It sends a plain IPv6 packet through
the IPv6-only net. Eventually, the packet is routed to the left tunnel router.
The tunnel router receives it, puts it in an IPv4 packet with the IPv4 address
of the right tunnel router as the destination address, and sends it across the
IPv4-only net. The right tunnel router eventually receives the packet, unpacks
it and passes the IPv6 packet inside on again as a plain IPv6 packet through
the right IPv6-only network to the destination host.

Tunnel nodes that put a packet inside an outer layer packet are called
tunnel entry points while those that unwrap such a tunneled packet are called
tunnel exit points. In many cases, a tunnel entry point will serve as tunnel
exit point for packets travelling in the opposite direction. But as we’ll see
later on, some tunnels are inherently unidirectional.

11.2 Tunnel Types

IPv6 comes with a daunting choice of different tunnel protocols, some of which
are quite similarly named; but “6in4”, “6to4” and “6over4” are fundamentally
different things. While this is quite confusing at first, most of these tunnels
are actually quite useful for one purpose or another.

11.4 Operational Issues 145

There are two types of tunnels: IP-in-IP tunnels put the tunneled IP
packets directly into outer IP packets while other tunnels use more complex
mechanisms.

Putting IP packets inside other IP packets has two advantages: It causes
very little overhead and in some cases it lets the tunnel entry point deduce
the address of the tunnel exit point from the inner destination address.

The other mechanisms provide for a number of features that IP-in-IP tun-
nels can’t possibly offer: They can use non-IP protocols as the outer protocol,
offer advanced cryptographic support and penetrate NAT gateways.

11.3 Common Scenarios

There are many different scenarios that make use of tunnels. The most com-
mon are these:

If our ISP only provides IPv4 connectivity, then a tunnel to a tunnel service
provider will still get us connected to the Internet6 without the need to find
a new ISP.

Similarly, if we have multiple IPv6 networks that are only connected to
each other via IPv4, then tunnels let us establish IPv6 connectivity between
them.

If we need to set up a connection through untrustworthy networks, an
encrypting tunnel lets us set up a virtual private network (VPN).

Beyond that we can use tunnels for some not so obvious purposes:

If we have a high-bandwidth network that uses a hardware IPv4 imple-
mentation but needs to deal with IPv6 in software, then we might consider
using tunnels to get our IPv6 traffic through that part of the network even if
it does support IPv6.

We can use tunnels to set up some “non-standard” routing. This is essen-
tial when we want to provide redundant network access to a site, since IPv6
address allocation policies make it virtually impossible to obtain provider-
independent address space. Section 25.1 explains how such a setup works.

Some tunnel specifications have been devised that provide IPv6 connec-
tivity to individual hosts even through an IPv4-only network. These should
be considered a last resort only. There are virtually no Unix implementations
available anyway.

11.4 Operational Issues

Setting up and operating a tunnel opens a number of issues that we need to
keep in mind.

146 11 Tunnel Basics

Tunnels that need to be explicitly configured can become a serious burden.
A single tunnel is not too bad, but if we want to configure tunnels between
a dozen tunnel routers, then we need 12 × 11 = 132 separate tunnels. This
makes self-configuring 6to4 tunnels particularly valuable.

In some cases, broken tunnels are difficult to debug. If we have access
to the tunnel entry and exit nodes, then the situation isn’t too bad. But if
one of the tunnel nodes is outside our administrative control, then things can
quickly become tedious and frustrating because we see the tunnel as a broken
link-layer connection only.

It is possible to set up nested tunnels, like tunneling IPv4 over IPv6 over
IPv4. In fact, there are situations where we might have reason to do so.
But nested tunnels pose the risk that we route a tunneled packet into the
tunnel again. These tunnel loops can cause traffic storms that we must avoid.
Fortunately, in many cases a tunnel entry point will refuse to let an already-
tunneled packet enter the tunnel unless explicitly configured to do so.

Prepending an additional IP header to a packet will make it larger. The
maximum transmission unit (MTU) of a tunnel is therefore smaller than that
of the actual link layer. Thanks to the mandatory path MTU discovery this
usually won’t affect network traffic too much. But there have been cases of
“telnet works but FTP doesn’t” that were eventually traced back to a bad
MTU configuration.

Finally, tunnels can seriously distort the topology of a network. Tunnels
will always be considered direct link-layer connections between the tunnel
end points. Without proper planning and documentation tunnels will make
networks unintelligible to both us as well as dynamic routing, which needs
to be configured properly to reflect the actual “distance” between the tunnel
endpoints, otherwise it will send traffic through a tunnel even though a better
route exists.

11.5 Security Considerations

From a security perspective, tunnels are a mixed blessing.

There is an increasing number of attacks on assumedly “IPv4-only” net-
works that don’t filter tunneled packets properly. If a packet filter doesn’t
stop tunneled traffic, then some combination of tunnel mechanisms may be
used to send traffic past an “IPv4-only” packet filter.

Attackers also use readily accessible tunnel entry points to obscure the
source of their attack. RFC 3964 [99, section 4.3] explains some of these
mechanisms.

Setting up a packet filter to deal with tunnels isn’t exactly trivial either.

On the positive side, tunnels allow us to implement the encryption of traffic
across untrustworthy networks at a limited number of central points.

11.6 Choosing the Proper Tunnel 147

11.6 Choosing the Proper Tunnel

With all the different tunnel types available it is sometimes a daunting task
to select the proper one for any given job. Fortunately, some useful rules of
thumb exist for many common situations.

For a moderate number of fixed tunnels, using configured tunnels as of
section 12.1.2 is usually the best approach.

When the number of tunnels gets larger or the tunnels change often, 6to4
tunnels with our own border routers as of section 12.2 eventually become a
better alternative.

To encrypt traffic across untrusted networks both IPsec in tunnel mode as
of chapter 21 and OpenVPN as of section 13.3 are feasible options.

OpenVPN is also useful to set up a tunnel through an IPv4 NAT gateway.
Without it, we need to set up the tunnel node on the NAT gateway itself,
configure reverse NAT or use a NAT-capable tunnel broker service.

For a small site there are two options: If we want to use a tunnel service
provider, then we need to use whatever they offer; that’s usually either a con-
figured tunnel or a semi-standardized NAT-capable tunnel and a tunnel broker
protocol to adjust for dynamically assigned IPv4 addresses, as section 14.1 ex-
plains. Without a dedicated tunnel service provider, a 6to4 tunnel is another
option at least for non-critical operations if we have a statically assigned IPv4
address and a router that can be configured to run as a 6to4 border router.

To deal with performance bottlenecks that are specific to IPv6, our best
option may be configured tunnels. Configured and 6in6 tunnels are useful
to establish some “non-standard” routing, like setting up a fallback route
through a second provider. Section 12.3 has the details on tunnels over IPv6.

Finally, if we need to set up a tunnel with a Cisco router as a peer, generic
routing encapsulation (GRE) may be the only choice; while GRE is less effi-
cient due to its extra overhead compared to a configured tunnel, it is widely
used by the Cisco community. Section 13.1 explains the details.

12

IP-in-IP Encapsulation

The tunnels introduced in this chapter encapsulate IP in IP using special pro-
tocol types in the protocol (IPv4) or next header (IPv6) field. Figure 12.1
shows how a plain, unencapsulated IPv6 packet in an Ethernet frame is en-
capsulated in an IPv4 packet (omitting the trailing Ethernet checksum).

Ethernet
Frame
Header

IPv6
Header

TCP
Header

TCP
Payload

Plain IPv6 Packet

Decapsulation
Encapsulation

Ethernet
Frame
Header

IPv4
Header

IPv6
Header

TCP
Header

TCP
Payload

Encapsulated (inner) IPv6 Packet
Outer IPv4 Packet

Fig. 12.1. An IPv6-in-IPv4 packet

The outer IP header treats the inner IP packet just like any ordinary trans-
port layer payload. Only the protocol type in the outer IP header identifies
the inner packet as IPv4 (protocol type 4) or IPv6 (protocol type 41).

With IP-in-IP encapsulation it is perfectly reasonable to tunnel IPv4 over
IPv4, or IPv6 over IPv6. In fact, some implementations provide a single
consistent framework and interface for all IP-in-IP tunnels.

150 12 IP-in-IP Encapsulation

From a conceptual point of view, encapsulation adds an intermediate tun-
nel layer to the TCP/IP stack of a tunnel node, as figure 12.2 shows. This
layer isn’t always used; to the network layer it appears as just another link
layer while the link layers consider it part of the network layer.

Transport
Layer

Network
Layer

Tunnel
Layer

Link
Layer

TCP UDP · · ·

IPv4 IPv6

Outer
IPv4

Outer
IPv6

Ethernet PPP
Token
Ring

· · ·

Fig. 12.2. The TCP/IP stack with encapsulation

From an implementor’s point of view the tunnel layer is part of the net-
work layer, if only because the link layer can’t distinguish encapsulated from
unencapsulated packets and therefore can’t tell where to pass an incoming
packet up to. But considering the packet format, the notion of a tunnel layer
suits our purposes quite well.

Besides the IP versions of the inner and outer IP headers, IP-in-IP encap-
sulation mechanisms differ in the way the tunnel entry point determines the
address of the tunnel exit point.

12.1 Configured and Automatic (6in4) Tunnels

Originally, two encapsulation tunnels for IPv6-in-IPv4 encapsulation, or 6in4
encapsulation for short, were defined in RFC 2893 [47] and its predeces-
sor RFC 1933 [46]: Configured and automatic tunnels. Their successor,
RFC 4213 [95] recently declared automatic tunnels obsolete and changed the
way tunnel endpoints configure their link-local addresses.

Configured tunnels are widely used since the bandwidth overhead they
require is very small. Automatic tunnels are formally obsolete but still avail-
able with many implementations; they are mostly relevant when configuring
a packet filter to protect from attacks based on these automatic tunnels.

Both tunnels were originally considered unidirectional. It is possible and
reasonable to use an automatic tunnel in one direction and a configured one
in the other. Without automatic tunnels this doesn’t make sense anymore, so
configured tunnels are generally considered bidirectional for most purposes.

12.1 Configured and Automatic (6in4) Tunnels 151

12.1.1 The Link-local Address Problem

Some implementations are still based on the old RFCs, causing an annoying
but otherwise harmless interoperability problem.

The old RFC 2893 [47, section 3.7] specifies that the link-local inner ad-
dress of a tunnel interface should be fe80::〈outer address〉. RFC 4213 [95,
section 3.7] changes this and just demands that the link-local address be cho-
sen in a way that ensures it to be different from the address used by the
remote peer.

The implementations differ significantly in the way they deal with the
inner link-local addresses.

Debian Sarge This implementation uses link-local addresses according to
the stricter RFC 2893 specification. It doesn’t assume that its peer does the
same and therefore conforms to RFC 4213 as well.

FreeBSD 6.1 The gif interface looks up the interface that is configured
with the outer tunnel address and re-uses its link-local address as the inner
tunnel address. This is in compliance with RFC 4213 but violates the old
RFC 2893.

Solaris 10 The behaviour is strictly according to RFC 2893. The link-local
address is derived from the outer tunnel address. Additionally, Solaris assumes
the peer to conform to RFC 2893 too and only configures a host route to the
link-local address derived from the peer’s outer address. 65

This causes an interoperability problem between FreeBSD 6.1 and So-
laris 10. To work around it we need to make all tunnel nodes conform to a
single standard. Preferably, we want Solaris 10 to set up a network route for
the entire link-local prefix fe80::/10 on its tunnel interface. Alternatively we
can force FreeBSD 6.1 to use link-local addresses that conform to RFC 2893.
We’ll see how to set up either workaround below.

12.1.2 Configured Tunnels

Configured tunnels are virtual point-to-point links between machines. The
tunnel entry point needs to be configured with the IPv4 address of the tunnel
exit point. Additionally, if we want to reach more than the tunnel exit point
through a tunnel, we need to set up our routing to use the tunnel for the
addresses we want to reach through it.

As a special case it is possible to set up a default (configured) tunnel, a
configured tunnel with a default route directing all IPv6 traffic through that
tunnel.

Configured tunnels are specified in RFC 2893 [47, section 4] and RFC 4213
[95, section 3].

152 12 IP-in-IP Encapsulation

Figure 12.3 shows a common test setup. The upper left network simulates
the Internet6 while the right network represents a local network connected to
the Internet6 through a tunnel. The two tunnel routers just differ in their
routing configuration: The left tunnel router only routes traffic to the right
upper subnet through the tunnel while the right tunnel router sends all non-
local traffic through the tunnel.

IPv4-only network, 192.0.2.0/24

Internet6 simulation, 2001:db8:fedc:f::/64 2001:db8:fedc:1::/64

Internet6
Host

Tunnel
Router

.1

Tunnel
Router

.2

Local
IPv6
Host

Fig. 12.3. Using a configured tunnel over an IPv4-only network

To configure the tunnel routers we first set up IPv4 on their bottom in-
terfaces and IPv6 including packet forwarding and a router advertisement
daemon on their top interfaces.

� The tunnel routers must be able to ping each other using IPv4.
� The hosts must be able to ping the router connected to their subnet

via IPv6.
� The routers must have a router advertisement daemon running.
� The hosts must have a default IPv6 route to their router.
� IPv6 packet forwarding must be enabled on the routers.

Next we configure the tunnel interface on each router.

Debian Sarge The tunnel interfaces are called sit〈n〉. By default, sit0
is used for automatic tunnels, so we set up sit1 for the tunnel. In theory,
ip lets us name the tunnel interfaces anything we like; in practice, doing so
tends to be confusing rather than helpful at least in textbook setups. So we
just stick with the more traditional approach and call the interfaces sit〈n〉.

There are multiple ways to configure a tunnel manually. The preferred
method uses ip like

12.1 Configured and Automatic (6in4) Tunnels 153

ip tunnel add sit1 mode sit remote 192.0.2.2 ttl 64

ip link set dev sit1 up

on the left tunnel router and similarly with remote 192.0.2.1 on the right
tunnel router. This creates a tunnel interface sit1, enables IPv6-in-IPv4
tunneling on it and configures a remote peer. Additionally it is advisable
to set the TTL explicitly as the example shows. Linux otherwise uses the
hop limit or TTL from the inner packet and copies it to the outer packet;
this may be useful in some situations but is generally considered troublesome
rather than useful—it will break traceroute, for example.

In addition we may also provide the arguments local 192.0.2.1 to the
first line to restrict incoming packets to a single local address. If the tunnel
router has multiple interfaces, then doing so is a good idea.

At this point our left tunnel router will automatically configure the link-
local address fe80::192.0.2.1. If we want to use more than link-local ad-
dresses on our tunnels, we can configure additional static addresses on them
as usual:

ip -6 addr add 2001:db8:fedc:4646:1::1/64 dev sit1

This isn’t strictly necessary but sometimes comes in handy when we want to
ping the tunnel exit point.

In /etc/network/interfaces we can make the same configuration per-
manent like this:

/etc/network/interfaces

auto sit1

iface sit1 inet6 v4tunnel

endpoint 192.0.2.2

local 192.0.2.1 ‖ Optional
address 2001:db8:fedc:4646::1 ‖ Optional
netmask 64 ‖ Only needed with previous line

After a reboot or an ifup sit1 the tunnel should be configured correctly.

FreeBSD 6.1 All encapsulation except for 6to4 tunnels is done with gif〈n〉
interfaces—the “generic tunnel interfaces”. With these we must supply both
the local and remote outer addresses when we configure them.

To set up the tunnel on the left router temporarily,

ifconfig gif0 create tunnel 192.0.2.1 192.0.2.2 up

creates the tunnel interface gif0, configures its local and remote outer address
and brings the interface up. If we want to add more than the link-local inner
addresses that are automatically configured, we do an

ifconfig gif0 inet6 2001:db8:fedc:4646::1 up

as with any ordinary interface.

154 12 IP-in-IP Encapsulation

To configure the left router permanently, we can set the equivalent vari-
ables in /etc/rc.conf like

/etc/rc.conf

gif_interfaces="gif0"

gifconfig_gif0="192.0.2.1 192.0.2.2"

ipv6_ifconfig_gif0="2001:db8:fedc:4646::1" ‖ Optional

The first line defines a list of gif interfaces to configure, the second sets the
outer tunnel addresses for gif0 and the third assigns it an optional static
IPv6 address.

To enable the configuration we must either reboot or do a

/etc/rc.d/netif restart

/etc/rc.d/network_ipv6 restart

to re-read /etc/rc.conf.
As section 12.1.1 already explained, FreeBSD uses link-local addresses that

may cause problems with older tunnel implementations. Most notably, Solaris
will configure the wrong link-local address for a FreeBSD tunnel peer, making
the tunnel unusable. To work around this problem, we can run the script

/etc/rc.local

#! /bin/sh

gif_interfaces="‘ifconfig -a | sed ’/^gif[0-9]*:/!d;s/:.*//’‘"

for g in $gif_interfaces

do

localaddr="‘ifconfig $g | sed ’/tunnel/!d;s/.* inet //;s/ .*//’‘"

badlinklocal="‘ifconfig $g \

| sed ’/inet6 fe80/!d;s/.*inet6 //;s/%.*//’‘"

for bad in $badlinklocal

do

/sbin/ifconfig $g inet6 $bad delete

done

/sbin/ifconfig $g inet6 fe80::$localaddr

done

after we have set up the outer tunnel addresses; it will remove all link-local
addresses first and then add one conforming to the old RFC 2893 standard,
thus making the interface conform to both the old and new specifications. To
fix the configuration after boot we can run the script from /etc/rc.local.

Solaris 10 Similar to FreeBSD, Solaris brings a tunnel implementation that
provides for arbitrary IP-in-IP tunneling. Different than FreeBSD the inter-
faces are named depending on the type of tunnel. For a configured tunnel, we
need an ip.tun〈n〉 interface.

On the left tunnel router the command

ifconfig ip.tun0 inet6 plumb tsrc 192.0.2.1 tdst 192.0.2.2 up

12.1 Configured and Automatic (6in4) Tunnels 155

will create (“plumb”) the tunnel interface ip.tun0 as an IPv6-in-IPv4 inter-
face, set the addresses of the tunnel end points and enable the interface.

If we also want to configure a routable IPv6 address on the tunnel interface,
then we need to know both the local as well as the remote address. Then an

ifconfig ip.tun0 inet6 addif 2001:db8:fedc:4646::1 \

2001:db8:fedc:4646::2 up

route add -inet6 fe80::/10 -iface fe80::192.0.2.1 ‖ Optional

will configure 2001:db8:fedc:4646::1 and 2001:db8:fedc:4646::2 as the
local and remote IPv6 address, respectively. The optional last line makes the
tunnel conform to RFC 4213.

If we create a file /etc/hostname6.ip.tun0 with the content

/etc/hostname6.ip.tun0

tsrc 192.0.2.1 tdst 192.0.2.2 up

addif 2001:db8:fedc:4646::1 2001:db8:fedc:4646::2 up ‖ Optional

we make the configuration permanent. To enable the configuration we either
run svcadm restart network/initial or reboot. Note that this permanent
configuration doesn’t set up the extra route to add RFC 4213 compatibility;
we’ll deal with additional routes in the next section. 66

At this point the tunnel routers should be able to reach each other using
IPv6 while only IPv4 traffic is seen in the bottom subnet.

� The tunnel interfaces must be up and running.
� They must be configured with the proper IPv4 address of the remote

tunnel router.
� The tunnel routers must be able to ping each other on their IPv6

addresses.

At this point we should probably make sure that there is actually only IPv4
traffic in the bottom subnet. If we start a packet sniffer like ethereal on the
bottom subnet we will see something surprising in its packet summary buffer:

Ethereal Summary Buffer

No. Time Source Destination Proto. Info

1 0.000000 fe80::c000:202 fe80::c000:201 ICMPv6 Echo request

2 0.006032 fe80::c000:201 fe80::c000:202 ICMPv6 Echo reply

3 1.023251 fe80::c000:202 fe80::c000:201 ICMPv6 Echo request

4 1.023713 fe80::c000:201 fe80::c000:202 ICMPv6 Echo reply

[. . .]

So according to the packet sniffer there are IPv6 packets in our IPv4-only
subnet. Even if we split the subnet and put an IPv4-only router in between
we see the same phenomenon. The explanation for this surprising behaviour
is as simple as unexpected: If we look at the packet details we’ll see that they
are indeed properly encapsulated:

156 12 IP-in-IP Encapsulation

Ethereal Packet Details

Frame 1 (90 bytes on wire, 90 bytes captured)

Ethernet II, Src: 00:0c:29:78:6c:26, Dst: 00:0c:29:ae:8c:c0

Internet Protocol, Src Addr: 192.0.2.2 (192.0.2.2),

Dst Addr: 192.0.2.1 (192.0.2.1)

Internet Protocol Version 6

Internet Control Message Protocol v6

[. . .]

Ethereal displays the inner addresses in its summary. This isn’t precisely what
we would expect in this context, but for many other purposes this behaviour
is preferable over displaying the outer addresses.

12.1.3 Routing Through a Tunnel

Next we configure the tunnel routers to forward traffic between the upper IPv6
subnets. As usual, we have a choice between static and dynamic routing.

Static routing through tunnels works without surprises except that tunnels
share a peculiarity with all point-to-point links: They are configured with an
interface route that usually requires us to specify an interface name rather
than a next-hop address.

In our example we configure the left tunnel router with a network route
for 2001:db8:fedc:1::/64 and the right tunnel router with a default route
through the tunnel.

Debian Sarge We can set the route using either ip or route. Both support
a dev keyword that lets us specify the interface instead of the IP address of
the tunnel peer. With ip we add the routes like this:

ip -6 route add 2001:db8:fedc:1::/64 dev sit1 ‖ Left Router
ip -6 route add default dev sit1 ‖ Right Router

Similarly, route does the same with a different syntax:

route -A inet6 add 2001:db8:fedc:1::/64 dev sit1 ‖ Left Router
route -A inet6 add default dev sit1 ‖ Right Router

To remove a route again, both with ip and route we just replace the add

keyword with del.
Section 7.3 already explained the limitations of /etc/network/interfaces

with respect to static routing. On the right tunnel router we can use a gateway
fe80::192.0.2.1 statement for the sit1 interface. Otherwise we need to use
the commands from above in up and down statements on the tunnel interface.

FreeBSD 6.1 We configure our routes with route, using the -iface option:

route add -inet6 2001:db8:fedc:1::/64 -iface gif0 ‖ Left Router
route add -inet6 default -iface gif0 ‖ Right Router

12.1 Configured and Automatic (6in4) Tunnels 157

To remove a route again we substitute add with delete. Additionally, we
don’t need to provide the -iface gif0 when we delete a route.

To make the configuration permanent we add the lines

/etc/rc.conf

ipv6_static_routes="tunnel0"

ipv6_route_tunnel0="2001:db8:fedc:1::/64 -iface gif0"

on the left router. On the right router we can specify default instead of the
network prefix in the second line.

Solaris 10 The route command has an -iface option similar to FreeBSD.
It is used differently, though: Instead of specifying an interface name we pass
it the local inner IP address of the tunnel interface:

route add -inet6 2001:db8:fedc:1::/64 \

-iface fe80::192.0.2.1 ‖ Left Router
route add -inet6 default -iface fe80::192.0.2.2 ‖ Right Router

To remove a route again we use the keyword delete instead of add.
As already explained in section 7.3, Solaris doesn’t really support static

routes in its boot configuration. If we really need to set up static routes, then
the script mentioned there also supports the -iface syntax.

If we want to make our tunnel RFC 4213 compliant, then we need to add
the route mentioned above. The command

route add -inet6 fe80::/10 -iface fe80::192.0.2.1

ensures that arbitrary link-local addresses are reachable through the tunnel.
67

Now our tunnel should be up and running. We test it just like any routing
setup:

� The tunnel routers have routing table entries configured for the remote
networks.

� An IPv6 ping6 from one of the IPv6-only hosts to the other works.

If we segment the bottom IPv4-only network and make the traffic between
the two tunnel routers pass through an IPv4-only router, then we can observe
why tunnels are called tunnels: Neither traceroute6 nor the hop count of
ping6 show the intermediate IPv4 routers. Packets behave like electrons in
some quantum physics experiment: They “tunnel” through the IPv4 network
without showing a sign of actually “passing through the IPv4 medium”.

With dynamic routing we need to make sure that link-local addresses work
across the tunnel. If they do, dynamic routing works without problems either
and we can let it take care of the routing tables.

The only potential problem that we may run into has to do with the
way packets are “tunneled”: A tunnel will appear to dynamic routing like a
direct connection between the tunnel endpoints, no matter how many outer

158 12 IP-in-IP Encapsulation

protocol layer hops are actually between them. This can seriously confuse
dynamic routing because it breaks the way metrics are used to choose the
shortest route. To deal with this situation the best strategy is a network
topology without redundant connections of which one route is tunneled and
the other is not.

In some cases it is however appropriate to meddle with the routing metrics
to fit the actual network topology. We’ll see in section 25.1 how to use dynamic
routing and tunnels to set up redundant Internet connectivity.

12.1.4 Automatic Tunnels

Automatic tunnels provide a very simple means to set up a tunnel host as an
exit point. By themselves they only allow tunnel hosts to communicate with
each other, which isn’t too exciting. But if the tunnel host has a configured
tunnel in the opposite direction, possibly with a default route through that
tunnel, then automatic tunnels can be useful.

Automatic tunnels have the advantage that they don’t need to be config-
ured. But they are limited to tunnel hosts, so they have been made obsolete
by 6to4 tunnels. In fact, some IPv6 implementations come without support
for automatic tunnels.

The advantage that automatic tunnels don’t need any configuration is also
a security concern: An assumedly IPv4-only machine can in some cases be
reached through this if no adequate filters are in place.

Tunnel hosts that are exit points of automatic tunnels use special IPv4-
compatible addresses: If they have the IPv4 address 192.0.2.130, then they
also have the IPv4-compatible address ::192.0.2.130. A tunnel entry point
can therefore derive the IPv4 address of the destination tunnel host from its
IPv6 address. These addresses are sometimes confused with IPv4-mapped
IPv6 addresses (::ffff:0:0/96) used for dual-stacked servers, but both are
entirely unrelated.

Automatic tunnels are specified in RFC 2893 [47, section 5] and declared
obsolete in RFC 4213 [95, section 8].

Support for automatic tunnels varies in different Unixen.

Debian Sarge The sit0 interface implements automatic tunneling. It lets
us set up tunnel hosts as well as tunnel routers.

FreeBSD 6.1 Automatic tunnels are not supported.

Solaris 10 The ip.atun0 interface implements automatic tunneling for tun-
nel hosts only. Short of setting up individual tunnels for all associated tunnel
hosts there is no support for setting up a tunnel router. 68

Considering their limited availability, the fact that they are declared obso-
lete, the general availability of 6to4 tunnels as a far more versatile successor
and their security issues, automatic tunnels are best avoided.

12.2 6to4 Tunnels 159

12.1.5 Security Considerations

Configured and automatic tunnels raise some security concerns. Most notably,
automatic tunnels have gained a reputation as an easy way to send IPv6 traffic
past IPv4-only packet filters that don’t filter by protocol type.

Additionally, tunnels may be used to hide the actual source of a packet: If
an attacker creates an IPv6 packet with a fake IPv6 source address and then
encapsulates it using its real IPv4 address as source, this packet will pass all
filters that detect bad source addresses on the way to the tunnel exit point.
There it will be decapsulated and then sent to the final recipient. Due to the
decapsulation the recipient can’t identify the original sender.

In section 12.6 we take a look at how to configure packet filters to prevent
these attacks.

If we need to make a tunnel trustworthy, then we should use proper cryp-
tographic means. We can use IPsec (see chapter 21) or OpenVPN (see sec-
tion 13.3) to provide the protection we need for our particular purposes.

12.2 6to4 Tunnels

The 6to4 tunnels specified in RFC 3056 [15] manage to combine the advan-
tages of configured and automatic tunnels: The inner IPv6 address contains
the IPv4 address of the tunnel exit point but the destination node may be
different from the tunnel exit point.

6to4 uses addresses with the special unicast prefix 2002::/16. To ev-
ery globally routed unicast IPv4 address it assigns the global routing prefix
2002:〈IPv4 address〉::/48. Traffic to these addresses may be routed nor-
mally; the prefix was taken from the standard 2000::/3 address range exactly
for this purpose. But it may also be encapsulated and tunneled to the IPv4
address embedded in the IPv6 address.

Note that 6to4 doesn’t work with the private IPv4 addresses reserved in
RFC 1918 [97], 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16. Using
them would introduce all the problems they cause to the IPv4 world into the
IPv6 world. Similarly, 6to4 can’t use multicast addresses or the loopback
address as the embedded IPv4 address.

Since the embedded IPv4 address is put somewhere inside the IPv6 address
we need to convert the decimal IPv4 address into a hexadecimal prefix—
something like 2002:192.0.2.1::1 or such won’t work. On most Unixen, a
simple script like

mk6to4

#! /bin/sh

echo "$1" | tr ’.’ ’ ’ \

| (read a b c d;

printf "2002:%x:%x\n" $(($a*256+$b)) $(($c*256+$d));)

160 12 IP-in-IP Encapsulation

takes care of turning an IPv4 address into the associated 6to4 prefix; just run
it with an IPv4 address as its argument and it returns the IPv6 prefix.

12.2.1 6to4 Tunnel Hosts

To get started we first set up 6to4 tunnels between dual-stacked end hosts.
Figure 12.4 shows our test environment. While it isn’t particularly useful in
itself, it is both the most simple configuration possible and an ideal basis for
the “real” setups in the following sections.

IPv4-only network, 192.0.2.0/24

Debian
Tunnel
Host

.1

FreeBSD
Tunnel
Host

.2

Solaris
Tunnel
Host

.3

· · ·

Fig. 12.4. 6to4 tunneling between hosts

Debian Sarge The preferred method to configure the tunnel temporarily
uses the ip command. 6to4 tunnels again use the sit〈n〉 interfaces.

ip tunnel add sit1 mode sit local 192.0.2.1 ttl 64

ip link set dev sit1 up

ip -6 addr add 2002:c000:201::1/16 dev sit1

These commands first create a tunnel interface named sit1 with a local outer
address 192.0.2.1, then bring the interface up and finally configure its inner
IPv6 address. Again, it is advisable but not mandatory to set an explicit TTL
in the first line.

The same configuration in /etc/network/interfaces looks like this:

/etc/network/interfaces

auto sit1

iface sit1 inet6 v4tunnel

address 2002:c000:201::1

netmask 16

endpoint any

local 192.0.2.1

Since ip lets us name our interfaces anything we like, using sit1 for the
interface name isn’t mandatory. We might as well call it 6to4 or whatever;
doing so tends to be confusing however, so I personally prefer to use sit1

which is easily identified as an encapsulating tunnel interface.

12.2 6to4 Tunnels 161

FreeBSD 6.1 6to4 tunnels are implemented as stf0 (for six-to-four) inter-
faces. Using a single ifconfig invocation we can create, configure and enable
such an interface:

ifconfig stf0 create inet6 2002:c000:202::1 prefixlen 16 up

We don’t need to configure the outer address explicitly because the 6to4 ad-
dress implicitly contains it.

We make the same configuration permanent in /etc/rc.conf by just spec-
ifying the IPv4 address to use:

/etc/rc.conf

stf_interface_ipv4addr=192.0.2.2

(along the usual ipv6_enable=YES) to set up 6to4 support permanently.
The FreeBSD implementation allows only a single stf interface with only

a single 6to4 address assigned to that interface. While this is technically
considered a bug, it usually doesn’t affect practical use.

Solaris 10 The 6to4 tunnel interfaces are called ip.6to4tun〈n〉. To set up
the interface we only need the outer IPv4 address:

ifconfig ip.6to4tun0 inet6 plumb tsrc 192.0.2.3 up

plumbs, configures and enables the interface.
By creating a file /etc/hostname6.ip.6to4tun0 with the contents

/etc/hostname6.ip.6to4tun0

tsrc 192.0.2.3 up

we make the configuration permanent. 69

The configurations for Debian Sarge and FreeBSD 6.1 show a surprising
prefix length on the tunnel: In section 3.4 we saw that all subnet prefixes
must be 64 bits long and now we set the prefix length to 16. But tunnel
interfaces are not regular interfaces and the 6to4 prefix isn’t a subnet; since
we can reach the entire 2002::/16 range through our 6to4 tunnel interface
this prefix length is actually correct. Solaris deals with this differently: It sets
up an interface route for 2002::/16 through the tunnel interface.

All implementations set the inner address on the tunnel interface to
2002:〈IPv4 address〉::1. While this isn’t mandatory, it is a widely estab-
lished practice that we shouldn’t deviate from without compelling reasons.

Before we connect machines behind tunnel routers, we make sure that the
tunnel hosts so far actually work as expected.

� Ensure that the tunnel hosts can reach each other via IPv4.
� Check that the tunnel interfaces are up and running.
� Verify that they use the proper IPv4 addresses as their outer tunnel

addresses.

162 12 IP-in-IP Encapsulation

� Their inner tunnel addresses must be set to 2002:〈IPv4 address〉::1
unless explicitly configured otherwise.

� The routing tables must show an interface route directing 2002::/16

through the tunnel interface.
� The tunnel hosts must be able to ping each other using their 6to4

addresses 2002:〈IPv4 address〉::1.

12.2.2 Tunnels Between 6to4 Sites

The next step extends our existing setup such that we replace our tunnel hosts
with tunnel routers, called 6to4 border routers, or 6to4 routers for short, and
connect additional hosts behind them. The border routers are configured to
talk to each other but don’t provide connectivity to non-6to4 addresses yet.
Figure 12.5 shows the extended setup.

IPv4-only network, 192.0.2.0/24

6to4 subnet 6to4 subnet 6to4 subnet

Debian
Border
Router

.11

FreeBSD
Border
Router

.12

Solaris
Border
Router

.13

· · ·

6to4
Host

6to4
Host

6to4
Host

Fig. 12.5. 6to4 tunneling between 6to4 sites

First of all we need to replace our tunnel hosts with border routers and
set up the upper “6to4 subnets” as well as the “6to4 hosts”. A 6to4 host is
a host that happens to have an IPv6 address from the 2002::/16 address
pool; otherwise it is just a plain host without any tunneling functionality (as
opposed to a “6to4 tunnel host”). Similarly, the 6to4 subnets in the diagram
are subnets where a router advertises a prefix from the 6to4 address range. A
border router is a standard advertising router with a 6to4 tunnel interface, so
there are two feasible lines of approach to set this up: Take our tunnel hosts
and make them advertising routers or take an advertising router and add a
tunnel interface. Either way will create a working border router.

In a test environment I prefer to set up an advertising router, make sure it
works as expected on the “local” interface as an advertising router, and then

12.2 6to4 Tunnels 163

set up the tunneling. That way all problems will be limited to my own local
environment rather than be leaking outside. But if we were going to establish
6to4 addresses in an existing environment, then it might be preferable to set
up the tunnel first to make sure that the 6to4 addresses work correctly before
we start to advertise them in our subnets. For now we use the first approach.

When we configure the upper interface of a border router, we need to
choose a subnet prefix for the 6to4 subnet. In theory, any prefix from the
global routing prefix 2002:〈IPv4 address〉::/48 associated with our outer
tunnel address will do; only the one we configured the tunnel interface with is
already used. We choose the first available one, 2002:〈IPv4 address〉:1::/64.
We now configure each border router as an advertising router as we have al-
ready done in section 4.3.3.

� At this point the 6to4 hosts must be able to ping “their” tunnel router
using the 6to4 addresses.

Next we configure the IPv4 interface and the tunnel interface on all border
routers as we have done in the previous section. The tunnel should now
work as expected. Think about it: The sending host has a default route to
its border router. The border router examines the destination address and
realizes that it is a 6to4 address. It sends it through its tunnel interface,
where it is encapsulated and passed to the IPv4 address of the receiver’s
tunnel router. The receiver’s tunnel router decapsulates the packet, realizes
that its destination is on its upper subnet and delivers it to the receiving 6to4
host.

The final test looks like this:

� The 6to4 hosts must be able to ping each other.
� A packet sniffer in the IPv4-only network must show encapsulated

packets only.

The last check is actually important: As long as we use a single subnet for
our IPv4-only network, we can’t suppress native IPv6 traffic there. If we run
a dynamic routing protocol on the border routers, then we might accidentially
route native IPv6 traffic through the assumedly IPv4-only subnet, so we need
to check this. Alternatively, we can split the bottom subnet and put IPv4-only
routers between the tunnel routers.

12.2.3 Tunnels Between 6to4 and Native IPv6 Sites

Now we connect 6to4 sites to native IPv6 sites, i.e. those that don’t use 6to4
addresses. To do so we need a 6to4 relay router, a router that has both 6to4
and native IPv6 connectivity.

Figure 12.6 shows a simple test environment. The border router to the
left connects the left 6to4 subnet to the IPv4 network. The relay router to

164 12 IP-in-IP Encapsulation

IPv4-only network, 192.0.2.0/24

6to4 subnet 2001:db8:fedc:1::/64

Border
Router

.21

Relay
Router

.22

6to4
Host

Native
IPv6
Host

Fig. 12.6. Connecting 6to4 sites and native IPv6 sites

the right connects the right non-6to4 IPv6 subnet to all 6to4 sites through
the IPv4 network.

The left border router is set up as in the previous section. Additionally we
configure a route for the prefix 2001:db8:fedc:1::/64 via the relay router.

Debian Sarge Without any obvious reason we need to configure the route
using the IPv4-compatible address of the relay router instead of its 6to4 ad-
dress. The command

ip -6 route add 2001:db8:fedc:1::/64 via ::192.0.2.22

configures the route temporarily. To make the configuration permanent we
must use up and down statements in /etc/network/interfaces again.

FreeBSD 6.1 We can add a route temporarily like

route add -inet6 2001:db8:fedc:1::/64 2002:c000:216::1

or set up the same route permanently in /etc/rc.conf as explained in sec-
tion 7.3.

Solaris 10 For security reasons that we’ll investigate in section 12.2.7 sup-
port for 6to4 relays is severely restricted. We can only configure one relay
router; doing so will set our IPv6 default route to this relay router.

To enable the relay temporarily, we do a

6to4relay -e -a 192.0.2.22

to enable 6to4 relaying and to set the address of the relay router to use.
To make the configuration permanent, we add the lines

/etc/default/inetinit

ACCEPT6TO4RELAY=YES

RELAY6TO4ADDR=192.0.2.22

12.2 6to4 Tunnels 165

to /etc/default/inetinit. 70

The relay router configuration is almost exactly the same as a border
router. We only change its configuration for the upper interface: Instead of
using a 6to4 prefix we use a native IPv6 prefix here.

Solaris 10 Due to the security concerns mentioned above, Solaris 10 imple-
ments such restrictive sanity checks that it is impossible to use Solaris 10 on
a relay router. 71

At this point it should be possible to ping between the two end hosts. If
not, try to watch the ping packets with a packet sniffer in all the subnets.

� Ping the right, native host from the left, 6to4 host.
� With a packet sniffer watch the echo requests travel the subnets.
� Watch the echo replies.

At this point it is necessary to configure every border router with the
addresses of the relay routers to every native IPv6 site. Effectively, we haven’t
won much compared to configured tunnels yet. The next section shows how
to simplify the configuration again.

12.2.4 Connecting to the Internet6: Default Relay Routers

Assuming that all native IPv6 sites are connected to the Internet6, there is
little reason to set up individual routes for all these sites. Instead, a border
router should be able to reach the entire native IPv6 address space through a
single relay router which is connected to the Internet6; we just configure the
border router with a default route to the relay router.

From a configuration point of view the situation looks much like figure 12.7:
Our border router just needs a default route directed towards the relay router.

6to4 subnet

Internet4

Border
Router

Relay
Router

Internet66to4
Host

Fig. 12.7. 6to4 default relay routers—simplified case

166 12 IP-in-IP Encapsulation

The relay router doesn’t need any configuration at all to reach any border
routers because it can extract their IPv4 addresses from the IPv6 packets it
forwards to them.

12.2.5 Public Relay Routers

To make life even easier, a number of public relay routers exist all over the In-
ternet. They all use the same IP address 192.88.99.1 or 2002:c058:6301::.
Thanks to dynamic routing all traffic to that address will be directed to the
“closest” public relay router and we don’t have to worry where exactly that
public relay is.

This trick, so-called “IPv4 anycast”, has been used for some time with
some of the DNS root servers; it does have its problems, but in many cases it
works well. The end result is that we can get full Internet6 access if we just
set up a border router with a default route aimed at 2002:c058:6301::. In
fact, some Unixen use this address by default.

To set up a border router that uses the next public relay router we do this:

Debian Sarge We need to set our default route here, because there is no de-
fault setting. The configuration in /etc/network/interfaces must include
at least the lines

/etc/network/interfaces

auto sit1

iface sit1 inet6 v4tunnel

gateway ::192.88.99.1

netmask 16

endpoint any

local 192.0.2.1

if sit1 is the tunnel interface and 192.0.2.1 is the IPv4 address of our border
router.

FreeBSD 6.1 The essential configuration in /etc/rc.conf is

/etc/rc.conf

stf_interface_ipv4addr=192.0.2.1

ipv6_defaultrouter=2002:c058:6301::

assuming 192.0.2.1 is the IPv4 address we use for our border router.

Solaris 10 To make the configuration permanent, we set up the tunnel de-
vice in /etc/hostname6.ip.6to4tun0 with a line

/etc/hostname6.ip.6to4tun0

tsrc 192.0.2.1 up

if the tunnel interface has the IPv4 address 192.0.2.1 and add a line

12.2 6to4 Tunnels 167

/etc/defaults/inetinit

ACCEPT6TO4RELAY=YES

to /etc/defaults/inetinit to enable 6to4 relay support. 72

In summary, if we have a globally routed static IPv4 address, then we
automatically have an IPv6 /48 prefix that we can use to connect to the
Internet6 with a minimal effort.

Setting up a public relay router is far more demanding. In theory, a
public relay router does little more than the relay routers we have set up
in section 12.2.3. In practice the “IPv4 anycast” part is quite demanding.
The anycast address must be announced through dynamic routing, usually
with the border gateway protocol (BGP). A public relay router must also
announce a route to 2002::/16 on its native IPv6 interface. If the relay
router has a problem, then the routing must be updated so traffic is directed
to other relay routers as quickly as possible. To detect a failing relay we
need a reliable monitoring setup. If we only want to provide the relay service
to certain IPv4 networks, then we must limit the distribution of our routing
announcements accordingly. If anything goes wrong, there may be a huge
number of people getting seriously annoyed; most particularly, announcing
the anycast address to machines that are not actually allowed to use the relay
(or the 2002::/16 prefix to users that you don’t want to provide service for)
will effectively disconnect these users from “their” 6to4 relay. If this affects
other people’s business, prepare for expensive lawsuits.

RFC 3068 [69] allocates the 192.88.99.1 address for the public relay
routers. It also has all the ugly details about public relays in general and how
to set them up properly.

12.2.6 Operational Issues

As exciting as 6to4 is, there are operational issues that are worth some con-
sideration before we decide to use 6to4 tunnels.

With the “IPv4 anycast” address we can reach the “nearest” public relay—
if everything works as expected. But in practice public relays have some
problems:

A broken public relay will shadow the working second-to-next relay, mak-
ing it inaccessible through the anycast address. All fallback scenarios for 6to4
rely on the assumption that the relay operators don’t make the mistake of an-
nouncing a broken relay with their dynamic routing. A wide range of things
may go wrong on the relay operator’s side, leaving us almost entirely helpless.

It isn’t even trivial to figure out who is operating our next public relay
(but traceroute will give us some clues), how to contact them if things go
wrong or who to ask if they intend to provide their relay service permanently;
we might do some initial latency checks before we set up a 6to4 environment

168 12 IP-in-IP Encapsulation

only to find out later on that “our” relay was a temporary test setup by the
local university and we now have our traffic routed around half the world to
the “next” relay, which also turns out to be unstable at best.

This makes 6to4 public relays effectively useless for production-grade pur-
poses unless we make our IPv4 provider support 6to4 tunneling. But then,
if we have a dedicated 6to4 tunnel provider, we might as well configure the
unicast address(es) of their relay(s) on our border router(s).

Even if we decide to use a configured relay router as we have done in
section 12.2.4, using 6to4 to connect to the Internet6 has an inherent problem.
In figure 12.7 on page 165 we have seen a simplified setup with a single border
router and a single relay, but reality looks more like figure 12.8. A ping

6to4 site

Internet4

Internet6

Fig. 12.8. 6to4 default relay routers getting out of control

request from the left host travels along the dashed line while a reply follows the
dotted line. Asymmetric routing in general tends to make life more difficult
than symmetric routing, but in this case three effects become particularly
important: If we are operating the 6to4 site but not the right host and its
network setup, then we have no idea what relay router the right host uses
and the number of IPv6 hops from left to right is noticeably larger than from
right to left, which tends to cause some confusion. If we can’t ping the right
host from the left host, then we don’t have any idea if the problem is caused
by our border router, our provider’s relay router or the relay router that the
right host uses. With asymmetric routing, tools like traceroute lose much
of their usefulness; the return packets that are generated within the Internet6
cloud will all travel entirely different paths, so a missing reply doesn’t tell us
anything about where a problem really occurs.

A 6to4 border router needs a globally routed IPv4 address. Whenever
that address changes we need to distribute a new prefix through our network.
Small sites that use a semi-permanent Internet connection with a dynamically
assigned IPv4 address, like many DSL customers, are forced to do a “hard”
renumbering without a grace period to deprecate the old address. While this
may be feasible in some cases, in most it is a serious problem. Effectively,

12.2 6to4 Tunnels 169

6to4 needs statically assigned globally routed IPv4 addresses for its border
routers.

So what are 6to4 tunnels good for?

If we just want to connect multiple locations which only have Internet4
connectivity, then most concerns except for the need for static IPv4 addresses
become irrelevant. This scenario is particularly useful in environments that
are highly distributed with many small sites or locations, like a company
network with a large number of local offices. For scenarios like these, 6to4
tunneling may be quite appropriate.

If we only want to play around with IPv6, don’t have any native Internet6
connectivity and don’t want to bother setting up a tunnel to a tunnel provider,
then 6to4 can be an option. If the next public relay router works reasonably
well, then performance may be better than a configured tunnel to a tunnel
provider far away.

Finally, 6to4 works without support from our local ISP. If we are stuck
with an IPv6-unfriendly ISP, using 6to4 will still gain us Internet6 access even
without support from that ISP. This wins us time to find a better ISP as well
as it puts pressure on our ISP, especially if we don’t pay by traffic volume
like they do: Eventually they may realize that they can save money providing
direct Internet6 connectivity because they don’t have to pay their upstream
providers for the extra traffic caused by the encapsulation headers.

In summary, relay routers, and especially public relay routers using the
6to4 anycast address, are potentially troublesome and shouldn’t be considered
for production-grade environments. For experimenting they are a useful tool.
6to4 tunnels between 6to4 sites save us a lot of configuration effort especially
with larger environments and are not affected by the problems that relay
routers introduce.

12.2.7 Security Considerations

6to4 tunnels raise a number of security problems.

From a 6to4 site operator’s point of view the most significant problems
are those we have already seen with configured and automatic tunneling in
section 12.1.5: 6to4 tunnels may be used to hide the actual source of a packet,
possibly for denial-of-service or reflection denial-of-service attacks.

The public relay router anycast mechanism may be used to redirect traffic
to a relay router controlled by an eavesdropper or to disrupt the service. The
problems mentioned in the previous section may be caused on purpose.

In general, 6to4 tunneling should not be used without proper packet fil-
tering as explained in section 12.6.

For additional information, check RFC 3964 [99]. It presents an overview
of the security implications of 6to4 tunnels in general.

170 12 IP-in-IP Encapsulation

12.3 Tunneling Over IPv6 Networks

RFC 2473 [17] defines a standardized way to encapsulate traffic over IPv6
networks in a way very similar to the configured tunnels in section 12.1.2; in
fact, some implementations use a generic tunneling interface for all IP-in-IP
encapsulation.

12.3.1 IPv4-in-IPv6 (4in6) Encapsulation

While it may seem a bit early to consider encapsulating IPv4 in IPv6, many
implementations already support this. The protocol type in the next header
field is 4 for “encapsulated IPv4” as explained in RFC 1853 [101].

To configure a tunnel we first need to set up IPv6 connectivity between the
tunnel endpoints. Then we create and configure the tunnel pseudo-interface.
In the example configuration in figure 12.9 the left router’s addresses are
2001:db8:fedc:1::1 and 10.0.0.1 as shown in the configurations below;
the right router’s addresses are 2001:db8:fedc:1::2 and 10.0.0.2 as the
outer and inner tunnel addresses, respectively. The right router should be
configured the same as the examples below with the local and remote addresses
swapped.

2001:db8:fedc:1::/64

192.168.0.0/24 192.168.1.0/24

4in6
Tunnel

4in6
Tunnel

IPv4
Host

IPv4
Host

Fig. 12.9. A test setup tunneling IPv4 in IPv6

Debian Sarge At this time, there is no implementation for IPv4-in-IPv6
encapsulation.

FreeBSD 6.1 The gif〈n〉 interface supports arbitrary IP-in-IP encapsula-
tion including IPv4-in-IPv6. To configure a tunnel endpoint temporarily,

12.3 Tunneling Over IPv6 Networks 171

ifconfig gif0 create tunnel \

2001:db8:fedc:1::1 2001:db8:fedc:1::2 up

ifconfig gif0 10.0.0.1 10.0.0.2

creates the interface, configures the outer addresses and enables the tunnel in
the first line and then configures the inner addresses in the second.

Unfortunately the boot scripts can’t deal with this setup properly, so it is
easiest to put these commands in /etc/rc.local to make the configuration
permanent.

Solaris 10 The tunnel interfaces called ip6.tun〈n〉 provide for encapsula-
tion with IPv6 as the outer protocol. To configure a tunnel temporarily,

ifconfig ip6.tun0 plumb \

tsrc 2001:db8:fedc:1::1 tdst 2001:db8:fedc:1::2 \

10.0.0.1 10.0.0.2 up

creates the interface, sets the outer and inner addresses and then brings up
the interface.

The same configuration made permanent needs the lines

/etc/hostname.ip6.tun0

tsrc 2001:db8:fedc:1::1 tdst 2001:db8:fedc:1::2

10.0.0.1 10.0.0.2 up

in /etc/hostname.ip6.tun0. 73

If we just want to set up a tunnel host, this is all it takes. The checklist
looks much like for a configured tunnel:

� Both nodes must be able to ping each other using IPv6.
� Their tunnel interfaces must be up and running.
� They must have the proper IPv6 addresses for their outer tunnel ad-

dresses.
� The inner IPv4 addresses must be set correctly.
� The nodes must be able to ping each other’s IPv4 address.
� A packet sniffer must show that the packets between the tunnel nodes

are actually encapsulated.

If we want to provide a tunnel service to other nodes, then we need to
make our tunnel node an IPv4 router. In theory, doing so doesn’t pose any
problems: We set up the local IPv4 configuration, enable packet forwarding
and configure our IPv4 routes, either statically or using a dynamic routing
protocol.

Surprisingly enough this causes an unexpected little problem at least with
Solaris and FreeBSD (and possibly other Unixen as well): The boot scripts
don’t configure static routes or default routes through a tunnel interface,
apparently because the routes are configured before the tunnels are set up.

172 12 IP-in-IP Encapsulation

FreeBSD 6.1 Since we already need to set up our tunnels in /etc/rc.local

or similar, it is easiest to set the static routes there, too. For a default route
in our example a line

/etc/rc.local

/sbin/route add default 10.0.0.2

in /etc/rc.local works as expected.

Solaris 10 Unfortunately, an entry in /etc/defaultrouter doesn’t work.
We can either use the workaround mentioned in section 7.3 or use dynamic
routing across the tunnel. 74

Dynamic IPv4 routing across these tunnels works without problems. To
make sure that our setup works as expected, we first check that the tunnel
routers can reach each other using IPv4. Then we do some more checks:

� If we use dynamic routing, on both tunnel routers ps must show a
running routing daemon.

� The routers must have appropriate routing table entries for the net-
work(s) they reach through the tunnel. (With dynamic routing it may
take some time for these to appear—up to 45 seconds per hop in the
peer network.)

� Nodes in the networks behind the tunnel routers must be able to ping
each other across the tunnel.

12.3.2 IPv6 in IPv6 (6in6) Encapsulation

RFC 2473 [17] also defines how to encapsulate IPv6 in IPv6. While this may
appear useless at first glance, it actually comes in very handy when we need
to set up redundant Internet6 connectivity as we’ll see in section 25.1.

In theory, configuration is almost exactly the same as in the previous sec-
tion except that the inner addresses are now also IPv6 addresses instead of
IPv4 addresses. In practice, keeping the inner and outer addresses and inter-
faces from interfering with each other can be tricky especially when dynamic
routing comes in.

Before we set up a tunnel we need to configure the direct IPv6 connectivity
between the tunnel nodes. For the time being we use static routing here;
without extra configuration dynamic routing mistakes a tunnel for a direct
link and behaves suboptimal at best.

Eventually we’ll try to use dynamic routing through the tunnel. This
forces us to put the routers in separate subnets connected by another router
that doesn’t run a dynamic routing protocol; otherwise the tunnel routers
may use dynamic routing between each other and route the traffic to each
other directly instead of using the tunnel. Figure 12.10 shows a minimal test
setup.

12.3 Tunneling Over IPv6 Networks 173

2001:db8:fedc:6::/64 2001:db8:fedc:7::/64

2001:db8:fedc:3::/64 2001:db8:fedc:4::/64

Static
Router

6in6
Tunnel

6in6
Tunnel

IPv6
Host

IPv6
Host

::2 ::3

Fig. 12.10. A simple 6in6 tunnel environment

Before we can set up the tunnel we need to configure the static router and
tunnel routers.

� The tunnel routers must be able to ping each other using their addresses
from the lower networks.

Next we set up the tunnel interfaces of the tunnel routers. Since we want to
use static routes first, we configure the tunnel interfaces with explicit inner
addresses 2001:db8:fedc:66::2 and 2001:db8:fedc:66::3. For the left
tunnel router the configuration looks like this:

Debian Sarge There is a kernel module for 6in6 tunnels but the userland
tools to configure it are still missing from the distribution.

FreeBSD 6.1 To configure the interface gif0 temporarily, the commands

ifconfig gif0 create

ifconfig gif0 inet6 tunnel 2001:db8:fedc:6::2 2001:db8:fedc:7::3

ifconfig gif0 inet6 2001:db8:fedc:66::2 up

create the interface, set the outer tunnel addresses, configure the local inner
address of the tunnel and bring the interface up.

For a permanent configuration we need to run the same commands from
a custom boot script or put them in /etc/rc.local again.

Solaris 10 We can configure the interface ip6.tun0 temporarily with the
commands

ifconfig ip6.tun0 inet6 plumb

ifconfig ip6.tun0 inet6 tsrc 2001:db8:fedc:6::2 \

tdst 2001:db8:fedc:7::3

ifconfig ip6.tun0 inet6 2001:db8:fedc:66::2 \

2001:db8:fedc:66::3 up

174 12 IP-in-IP Encapsulation

to create the interface, set the outer and inner tunnel addresses and bring the
interface up. The line

/etc/hostname6.ip6.tun0

tsrc 2001:db8:fedc:6::2 tdst 2001:db8:fedc:7::3 \

2001:db8:fedc:66::2 2001:db8:fedc:66::3 up

in /etc/hostname6.ip6.tun0 establishes the same configuration perma-
nently. 75

Analogously we must configure the right tunnel.

� At this point we must be able to ping the tunnel nodes across the
tunnel.

� A packet sniffer must show that the traffic through the bottom subnets
is actually encapsulated.

If our tunnel nodes weren’t routers but hosts, the configuration would be
complete now. But since they are set up as routers, we need to add static
routes to them for each opposing upper network.

FreeBSD 6.1 We set the route using the route command like

route add -inet6 2001:db8:fedc:4::/64 -iface gif0

either temporarily or permanently from our boot script (or /etc/rc.local).
Since the gif0 interface won’t be up until after the standard boot scripts have
run, putting a static route in /etc/rc.conf unfortunately doesn’t work even
if we specified the peer address instead of the tunnel interface as the next hop.

Solaris 10 The command

route add -inet6 2001:db8:fedc:4::/64 -iface 2001:db8:fedc:66::2

sets up the route temporarily. To make it permanent we must use the
workaround from section 7.3 again. 76

We give the tunnel setup a final check:

� Nodes from behind the tunnel must be able to ping each other.
� A packet sniffer in the bottom subnets must show that the traffic be-

tween the tunnel endpoints is encapsulated.

If we want to use dynamic routing across the tunnel, then we need to con-
figure it slightly differently. The RIPng specification insists that all RIPng
traffic originates from link-local addresses, so we need to use link-local ad-
dresses on the tunnel interfaces.

Solaris 10 This leads to a problem similar to the one we have already en-
countered with configured tunnels in section 12.1.1: The configuration com-
putes the link-local address of the peer from its outer tunnel address by com-
bining the fe80::/64 prefix with the interface ID of the outer address. Other

12.3 Tunneling Over IPv6 Networks 175

implementations, like FreeBSD, use a different link-local address. We can
work around this problem by setting a route for fe80::/10 through the tun-
nel as we have done in section 12.1.2. 77

Again we first configure the bottom interfaces of the tunnel routers so that
they can reach each other without the tunnel.

Then we set up the tunnel. This time however we use link-local addresses
as the inner tunnel addresses.

FreeBSD 6.1 If we bring up the tunnel interface gif0 with

ifconfig gif0 create inet6 \

tunnel 2001:db8:fedc:6::2 2001:db8:fedc:7::3 up

either manually or from /etc/rc.local, then ifconfig will configure the
tunnel with a link-local address.

Solaris 10 The command

ifconfig ip6.tun0 inet6 plumb \

tsrc 2001:db8:fedc:6::2 tdst 2001:db8:fedc:7::3 up

plumbs the tunnel, configures the outer tunnel addresses and enables it. The
equivalent permanent setup looks like

/etc/hostname6.ip6.tun0

tsrc 2001:db8:fedc:6::2 tdst 2001:db8:fedc:7::3 up

in /etc/hostname6.ip6.tun0. If the tunnel peer uses a link-local address
different than the one Solaris expects, we also need to set an interface route
for fe80::/10 through the tunnel as we did in section 12.1.2. 78

With the tunnel set up and running we need to enable or start the dynamic
routing as explained in section 7.4. If we have done a temporary configuration,
we may also need to restart the routing daemon to find the new interface.

After the dynamic routing has had some time to update the routing tables,
it should be possible to use the tunnel.

� The dynamic routing daemons must be running.
� All of the previous checks for static routes must be met.

At this point we still don’t run dynamic routing between the tunnel routers
and the middle non-tunnel router. In theory, using dynamic routing both
through the tunnel and the bottom subnets is perfectly reasonable; in prac-
tice it causes unanticipated effects. Consider the slightly larger example in
figure 12.11: If we want to send a packet from any router to the right tunnel
router it should travel straight to the right. But dynamic routing detects a
“direct link” between the two tunnel routers, so routers 1 through 4 will actu-
ally send their packets left to the left tunnel router: Dynamic routing assumes
that the shortest path for the packet from router 4 to the right tunnel router

176 12 IP-in-IP Encapsulation

A B C D E F G H I J

1 2 3 4 5 6 7 8 9

Fig. 12.11. A tunnel environment that confuses dynamic routing

takes five hops, through the subnets D, C, B, A and the tunnel, which appears
to the dynamic routing one hop shorter than the untunneled path through
the subnets E, F, G, H, I and J.

Some dynamic routing implementations let us set a metric for every con-
nection. With RIPng we might want to set the distance metric between
the tunnel routers to the number of intermediate subnets that the packet is
tunneled through, in our example 10 hops. Doing so the dynamic routing al-
gorithm would behave reasonably again, at least as long as the “untunneled”
distance between the tunnel routers doesn’t change.

Unfortunately, lightweight RIPng implementations don’t offer this feature.
And even then, with a maximum metric of 15 hops RIPng quickly reaches its
limits if we start to manipulate the distance metrics. Without some more
powerful routing protocols, using dynamic routing both through a tunnel and
between the tunnel routers is usually a bad idea. Chapter 17 explains how to
use OSPF with IPv6; for this purpose it is a far superior choice.

Finally, some any-in-IPv6 tunnel implementations have another surprising
feature to offer: It is sometimes possible to use the same tunnel for IPv4
and IPv6 traffic. But using a single tunnel for both IPv4 and IPv6 as the
inner protocol generally doesn’t offer any advantages over using two separate
tunnels and tends to confuse things quite noticeably, so this is a feature better
to avoid.

12.4 6over4 Tunnels

RFC 2529 [14] specifies another encapsulating tunnel: 6over4 tunnels, not
to be confused with 6to4 tunnels. At this time, implementations are rare to
non-existent at least in the Unix world. For completeness sake, and for those
who need to set up packet filters to protect networks with 6over4-capable
machines, we should still take a quick look at this tunneling mechanism.

6over4 tunnels treat the outer IPv4 protocol as a multicast-capable link
layer. The IPv6 link-local address associated with an IPv4 “link-layer” address
192.0.2.1 is fe80::192.0.2.1. Multicast IPv6 addresses are mapped to
239.192.0.0/16 with the last two bytes of the IPv6 multicast address forming
the last two bytes of the IPv4 multicast address, too.

12.6 Packet Filter Considerations 177

Since 6over4 assumes IPv4 to be a multicast-capable link layer, the un-
derlying IPv4 infrastructure must provide for IPv4 multicast routing. This
alone is probably reason enough why 6over4 never became popular enough to
be widely implemented.

12.5 The Intra-site Automatic Tunnel Addressing
Protocol (ISATAP)

RFC 4214 defines the intra-site automatic tunnel addressing protocol (ISA-
TAP). It allows sparsely distributed IPv6 hosts in an IPv4-only infrastructure
to communicate with each other as well as the Internet6.

ISATAP is available with current versions of Microsoft Windows but isn’t
generally available to the Unix world.

Similar to 6over4 it uses IPv4 as a link layer. But different than 6over4 it
doesn’t depend on IPv4 multicast routing. Without multicast routing, neither
neighbor discovery nor router discovery work as before.

ISATAP uses special interface IDs of the form 0:5efe:〈IPv4 address〉 and
200:5efe:〈IPv4 address〉. With these interface IDs, neighbor discovery be-
comes unnecessary because the link layer (aka. IPv4) address of any ISATAP
node can be extracted from its IPv6 address.

Replacing router discovery with a multicast-independent mechanism is
more difficult. ISATAP uses a “potential router list” that must be initialized
somehow using external means; these may be manual configuration, a DNS
entry like isatap.example.com or some DHCP extension. Using this list,
ISATAP sends unicast router solicitations to all the candidate routers.

The purpose of ISATAP is to provide IPv6 connectivity to individual nodes
in a non-IPv6 environment. Today this scenario appears to be somewhat
unrealistic; a small number of individual nodes could be taken care of using
configured tunnels. When the number of IPv6 nodes reaches the point where
configured tunnels become a burden, then it is normally time to deploy native
IPv6 support.

12.6 Packet Filter Considerations

Packet filters and tunnels don’t generally mix well. Configurations tend to
be complex, difficult to comprehend and therefore prone to misconfiguration.
Beyond that some inherently unsolvable problems exist that we must deal
with at the architectural level.

178 12 IP-in-IP Encapsulation

12.6.1 Fundamental Problems

For a packet filter, tunnels cause a disturbing number of serious problems.
In some cases it may be possible to mitigate them, but there is no general
solution.

Tunnels make it easy to spoof addresses. When a tunnel exit point de-
capsulates a tunneled packet, it discards the outer header of the packet. An
attacker may use some source address in the outer header to pass the packet
through a packet filter that checks the still encapsulated packet. Once the
packet is decapsulated this address is lost, so subsequent packet filters can’t
ensure that the inner and outer addresses correspond.

Even if we had a (currently non-existent) packet filter implementation that
let us check on the inner and outer addresses, an attacker might use nested
tunnels to circumvent even these checks—a packet filter would need a means
to deal with non-constant nesting levels, possibly with a mixture of IPv4 and
IPv6 headers.

If we have an entire tunnel router “farm”, repeatedly encapsulated packets
can be sent to one tunnel router, be decapsulated there for the first time, then
on to another tunnel router and so on until they actually arrive at the final
victim node. Tracing back such a packet will be extremely tedious.

A major job of packet filters is to ensure that a packet with a given source
address arrives through the correct interface; with tunnels an attacker can
circumvent standard routing mechanisms, and therefore anti-spoofing ingress
filters. The problems are similar to source routing attacks with IPv4.

With automatic tunnels, 6to4, 6over4 and ISATAP there is always a chance
that a misconfigured client accepts these packets. These packets can’t be
filtered except on the tunnel exit point or by denying all 6in4 traffic.

12.6.2 Manageable Special Cases

In some special cases it is possible to combine packet filters and tunnels in a
reasonable way.

Nested tunnels should be avoided whenever possible. There are very few
situations that put them to good use, and most of these could be dealt with
more appropriately with a sanitized network topology.

If we only use a tunnel to connect to the Internet6 through a tunnel service
provider, then packet filter configurations are reasonably straightforward: We
simply won’t trust anything coming in through the tunnel, much like we don’t
trust anything coming in from our untunneled Internet4 uplink.

In a more generalized way we can use packet filters and tunnels if we don’t
trust anything coming out of a tunnel interface—or don’t trust it more than
the networks we allow tunneled traffic to come in from.

The opposite also holds true: If we only allow tunnels from trustworthy
interfaces, then we can trust the tunneled traffic as much as we trust all of
these interfaces together.

12.6 Packet Filter Considerations 179

If however we use “trusted” and “untrusted” interfaces and tunnels to-
gether on a single router, then all bets are effectively off; todays packet filters
simply can’t cope with such a situation. The only thing we can do is split the
tunnels over multiple filtering routers, each dealing with only a single “security
domain”. With encapsulating tunnels, cryptographic authentication is not a
solution to this problem since encapsulation doesn’t provide authentication.

To deal with the “configuration-free” encapsulation mechanisms, i.e. au-
tomatic tunnels, 6to4, 6over4 and ISATAP, the only viable strategy is to deny
all encapsulation in all networks except between the tunnel nodes. Even then,
these tunnel mechanisms may be used to attack a node connected to the same
subnet as the attacker, but filtering encapsulated packets on a router at least
prevents remote attacks. A network topology that restricts tunnels to a mini-
mal number of subnets and separates ordinary workstation-style hosts from
these subnets will protect from these attacks. To deal with local attacks, all
nodes that are not set up as a tunnel exit point must locally block encapsu-
lated traffic.

12.6.3 Configurations

Showing full example configurations for all the tunnel types we have seen in
this chapter is infeasible. Instead we take a look at a number of criteria to
filter for and how to configure a packet filter for each of these criteria.

One of the good things about encapsulation and packet filters is that a
default “deny all” rule will block encapsulated packets unless we explicitly
permit them.

To deal with encapsulated packets on a packet filter we need to allow traffic
by the protocol type in the IP header.

Debian Sarge The iptables and ip6tables commands both support an
option --protocol 〈proto〉, or -p 〈proto〉 for short. With -p ipv6 or -p 41

we filter for IPv6 as the inner protocol. Similarly, with -p ipencap or -p 4

we can filter for IPv4 as the inner protocol.
If the packet filter just passes the traffic to a separate tunnel node, then

we just need to add matching filter rules to the FORWARD chain.
If the packet filter is configured on the tunnel node itself, then things get

slightly confusing. The encapsulated packets bear a local address, so they are
run through the INPUT and OUTPUT chains. The unencapsulated packets are
only run through the INPUT and OUTPUT chains if they bear a local address,
but through the FORWARD chain if the tunnel node is a tunnel router and the
unencapsulated packets are forwarded. If you think about it for a moment
you’ll see the logic behind this.

FreeBSD 6.1 The pf configuration supports a filter option proto 〈proto〉
that filters the inner protocol. We can use proto ipv6 or proto 41 to filter
IPv6 and proto ipencap or proto 4 to filter IPv4 as the inner protocol. 79

180 12 IP-in-IP Encapsulation

Generally, unencapsulated packets go in and out of the tunnel interface
and encapsulated packets only pass through the physical interface(s).

We can filter configured, automatic and 6to4 tunnels this way. They only
differ in the addresses they use, so we just need to configure the source and
destination addresses accordingly. At this time it isn’t feasible to filter 6over4
or ISATAP; if we allow 6in4 encapsulation, then we let these through, too.

Filtering 4in6 and 6in6 tunnels follows the same pattern as configured
tunnels, only the protocol type (with 4in6) and the outer addresses differ.

13

Other Tunneling Methods

Besides encapsulating tunnels a range of more general tunneling mechanisms
exist.

The generic routing encapsulation (GRE) is a tunnel protocol popular with
some dedicated router hardware. The IETF has recently released the speci-
fication of a UDP based tunnel protocol called Teredo. OpenVPN is a VPN
implementation that has become quite popular recently; besides its crypto-
graphic features it provides a way to tunnel IPv6 through NAT gateways.

13.1 GRE

RFC 2784 [40] specifies the generic routing encapsulation (GRE), a tunneling
mechanism that tunnels “everything over everything”—not limited to the IP
world. This extremely generic tunneling protocol inserts an extra eight bytes
between the outer network layer header and the tunneled packet. With IP as
the outer protocol the protocol version (with IPv4) or next header field (with
IPv6) is set to 47.

Otherwise GRE behaves just like a generic IP-in-IP encapsulation. The
reason to use it, in spite of the extra overhead, is usually a Cisco router at the
other end; the Cisco GRE implementation allegedly has better performance
than their configured tunnels.

Debian Sarge The undocumented gre〈n〉 interfaces implement GRE tun-
nels. We can configure them using the ip like a configured tunnel if we
substitute the mode sit option with mode gre.

There is no support in /etc/network/interfaces for GRE tunnels, so we
must supply our own boot script or use up and down statements to configure
the tunnel.

The interfaces don’t configure link-local addresses, so we must assign them
addresses ourselves.

182 13 Other Tunneling Methods

FreeBSD 6.1 The GRE interfaces are called gre〈n〉. They are configured
mostly like gif interfaces. There is a minor difference, though: When con-
figuring the inner addresses, the local address needs an explicit /128 prefix
length if it is an IPv6 address. So the commands to set up an IPv6-GRE-IPv4
tunnel, to tunnel IPv6 over IPv4 using GRE, the necessary commands to set
up the tunnel are

ifconfig gre0 create tunnel 192.0.2.1 192.0.2.129

ifconfig gre0 inet6 2001:db8:fedc:6666::1/128 \

2001:db8:fedc:6666::2 up

This creates the tunnel interface, configures the outer addresses (using IPv4
addresses 192.0.2.1 for the local and 192.0.2.129 for the remote address
here), then configures the inner IPv6 addresses (2001:db8:fedc:6666::1 for
the local and 2001:db8:fedc:6666::2 for the remote side) and brings the
interface up.

If no inner addresses are configured, link-local addresses are automatically
assigned. If we want to run dynamic routing over the tunnel, then we may
decide not to configure any explicit addresses.

There is no support for gre interfaces in /etc/rc.conf so all configuration
must be done in /etc/rc.local or a custom boot script.

Tunneling doesn’t work if the tunnel is between two nodes in the same
subnet at least if IPv6 is tunneled over IPv4. This bug is probably
irrelevant in most cases but turned up when I was experimenting with

?
this tunnel type.

Solaris 10 There is no GRE implementation available. 80

13.2 Teredo

Another tunnel protocol that is designed to penetrate NAT gateways as a
“last resort” is Teredo. The official specification was only recently released
as RFC 4380 [70]. Microsoft has previously shipped their current Windows
with an implementation based on a draft of the RFC. The Miredo project has
implemented Teredo for Linux and the BSDs; the distributions don’t include a
package, but http://www.simphalempin.com/dev/miredo/ has both Debian
packages and sources.

Teredo is UDP based, using port number 3544. Implementations based
on the draft use the preliminary 3ffe:831F::/32 address prefix allocated to
Microsoft; RFC 4380 officially allocated the prefix 2001::/32 for Teredo.

A Teredo client will initially contact a Teredo server to obtain its IPv6
address. Embedded within this address is the IPv4 address of the Teredo
server. If Teredo clients want to reach each other, they query the Teredo
server for the current address of their peer. Depending on the kind of NAT

13.3 OpenVPN 183

used, the Teredo server will contact the destination client and make it initiate
a connection to set up the necessary NAT state.

Teredo clients and native IPv6 nodes can communicate with each other
using Teredo relays. These relays have both IPv4 and native IPv6 connectivity
and announce a route to the Teredo prefix on their IPv6 interface.

The problem that Teredo addresses is fairly uncommon today: Small sites
that are stuck behind a non-IPv6 NAT border router are easier connected us-
ing OpenVPN behind that border router or a NAT-penetrating tunnel broker
as we’ll see in section 14.1. Sites reaching a size where performance becomes
enough of an issue to prevent the use of OpenVPN can set up border routers
to get IPv6 connectivity either natively or through configured or 6to4 tunnels.

13.3 OpenVPN

Probably the most unusual tunnel mechanism in this chapter is OpenVPN : It
isn’t really meant as a tunnel protocol as such but as a virtual private network
(VPN) security solution. It runs in user space, not within the kernel, so its
performance can’t compete with kernel-based tunnels like encapsulation or
GRE. Since it tunnels IPv6 over UDP, it bloats the tunnel packets more than
the encapsulating tunnels. But these handicaps let it operate through NAT
gateways and make it portable, so it works on a wide range of operating
systems. These two features make it a unique tool, even though its IPv6
support is still limited.

OpenVPN traditionally runs as a peer-to-peer protocol with two equally
configured peers talking to each other. Since OpenVPN 2.0 there has been
support for a “server mode” where a single server operating on a single port
waits for an arbitrary number of clients to initiate a tunnel; but this operation
mode doesn’t support IPv6, so it is currently of little value in an IPv6 scenario.

Throughout this section we talk about a “peer-to-peer configuration” if
both tunnel nodes are able to send an initial packet to the other peer. If a
NAT gateway is placed between them, then only the node “behind” the NAT
gateway can initiate a tunnel; we call this a “client/server configuration”. The
“server” is the node which can be initially reached from a “client” and the
“client” is the node behind the NAT gateway that must initiate the tunnel
setup. The client may be located behind a NAT gateway since the initial
tunnel setup packet will also set up the necessary translation state on the
NAT gateway(s) between the client and server.

OpenVPN runs on a configurable UDP or TCP port, by default on
1194/UDP. OpenVPN can tunnel either as an IP layer router or as a link-layer
bridge. It supports data compression using the LZO library. Besides statically
configured shared secrets it offers SSL/TLS based public key authentication
and strong encryption.

184 13 Other Tunneling Methods

Installing OpenVPN on most Unixen is quite straightforward. If it isn’t
included as a binary package, building it from source poses no real problem.
The sources are freely available from http://www.openvpn.net/.

Debian Sarge The package openvpn contains OpenVPN 2.0. The boot
script expects the configuration file to be /etc/openvpn/openvpn.conf.

FreeBSD 6.1 The ports and packages collections bring OpenVPN 2.0.5. To
enable OpenVPN we add a line

/etc/rc.conf

openvpn_enable=YES

to /etc/rc.conf. As usual with FreeBSD ports/packages, the configuration
file is in /usr/local/etc/openvpn/openvpn.conf.

Solaris 10 The tunnel device available for Solaris 10 doesn’t support IPv6,
so OpenVPN doesn’t either. 81

To test OpenVPN we need a test environment with a NAT gateway. Fig-
ure 13.1 shows the setup that we use in the following examples.

10.0.0.0/8 (Private Network) 192.0.2.0/24 (Public Network)

2001:db8:fedc:3::/64 2001:db8:fedc:4::/64

NAT
Gateway

OpenVPN
Client

OpenVPN
Server

IPv6
Host

IPv6
Host

.2 .3.1 .1

Fig. 13.1. OpenVPN in a NAT environment

Before we set up the OpenVPN tunnel we configure the tunnel routers as
advertising routers on their upper interfaces. We also configure the bottom
interfaces of the routers using the IPv4 addresses shown in the diagram. Fi-
nally we set up the NAT gateway with its right interface as its public/NAT
interface.

To make sure that the configuration so far works as expected we run a few
tests:

� The IPv6 hosts must receive their subnet prefixes from the routers.

13.3 OpenVPN 185

� IPv6 forwarding must be enabled on the tunnel routers.
� The bottom interfaces of the tunnel routers must be up, running and

configured with their IPv4 addresses.
� An IPv4 ping from the left tunnel router to the right must work.
� An IPv4 ping from the right tunnel router to the left must not work;

otherwise the NAT gateway doesn’t do any address translation but
forwards the traffic unchanged.

Now we need to configure OpenVPN to set up the tunnel. In the simplest
case, the lines

openvpn.conf

daemon ‖ Make OpenVPN run as a daemon
dev tun ‖ Use IP tunnel, not Ethernet tunnel
tun-ipv6 ‖ Support IPv6 tunneling
remote 192.0.2.3 ‖ Address or DNS name of peer
up "sh ${config%.conf}.up" ‖ Run script to configure interface

in openvpn.conf do the job. While the first three lines are self-explaining,
the last two deserve some more consideration: The remote statement defines
the address of the peer and optionally the port number to use and the up

statement runs a script after we have brought up the interface.
If we operate without a NAT gateway in between, either peer can initiate

a tunnel setup. In that case we would configure each with the IP address or
DNS name of the other as with the remote line shown above. With that we
are settled. But as soon as NAT comes in, things become more difficult. On
the client we need a configuration like

openvpn.conf

remote 192.0.2.3 ‖ Address of peer; must be configured on client
ping 30 ‖ Ping peer, to maintain NAT state

in openvpn.conf. Here we need the client, that is the peer “behind” the NAT
gateways, to initiate the tunnel. We do so by specifying the address of the
server as before. Additionally we must keep the tunnel “alive” by continuously
sending packets before the NAT gateways drop the address mapping. To do
so we make the client ping the server every thirty seconds. On the server side
we just omit the remote statement so it will wait for an incoming packet from
the client.

OpenVPN doesn’t configure the tunnel interface by itself, so we need to do
it with a little script that is run whenever a tunnel is established. The cryptic
up statement above does exactly this. It executes a shell script named and
located like the configuration file but with the suffix .up instead of .conf. The
script looks different, depending on the particular Unix and our preference for
static or dynamic routing. OpenVPN sets some environment variables before
it starts the script; in these scripts we only use $dev which contains the name
of the tunnel device.

186 13 Other Tunneling Methods

Debian Sarge Linux expects us to supply an explicit IPv6 address to the
tunnel interface. While that is fine with static routing, it leaves us with a
minor problem if we need a link-local address for RIPng. If we run a script
like

openvpn.up

localaddr="‘ip -6 addr show eth0

| sed ’/inet6 fe80::/!d;s/.*inet6 fe80::/fe80::/;sX/.*XX’

| head -n 1‘"

/sbin/ip -6 link set $dev up

/sbin/ip -6 addr add $localaddr dev $dev

/sbin/sysctl -w net.ipv6.conf.$dev.use_tempaddr=-1

/sbin/ip -6 route add default dev $dev

from openvpn.up, then we just “recycle” the link-local address of eth0. If
we want to configure the local address ourselves, then we can simply remove
the first three lines and assign the local address we prefer to localaddr. The
sysctl invocation reduces the (harmless) error messages the kernel occasion-
ally logs about the EUI64 identifier of the tunnel interface. Finally we can
append some statements that set up static routes as in the last line.

FreeBSD 6.1 We can simply bring up the interface without an explicitly
configured IPv6 address using the commands

openvpn.up

/sbin/ifconfig $dev up

/sbin/route delete inet6 default || true

/sbin/route add -inet6 default -iface $dev

in openvpn.up. The first line brings the interface up and the optional second
and third line set up a static default route. 82

At this point our tunnel through the NAT gateway should be functional.

� The tunnel nodes have their tunnel interfaces up, running and config-
ured with the expected local addresses.

� The tunnel nodes are able to ping each other using their inner tunnel
addresses.

� A packet sniffer shows the periodic ping packets from the client to the
server.

� The hosts behind the tunnel can ping each other.
� Even after several minutes of inactivity the server can ping the client

without prior traffic.

If a server needs to support multiple clients, then we need to do a bit
more configuration. On the server side we need to run a separate openvpn

instance for every client. Every instance needs to run on a different port
number. For the server the additional configuration option can be added to
the configuration file using a line

13.4 Packet Filter Considerations 187

openvpn.conf

port 6666

or with the command line option --port 6666. The client needs an extended
format of the remote specification like

openvpn.conf

remote 192.0.2.3 6666

or an additional command line argument --remote 192.0.2.3 6666 to con-
tact the server on port 6666.

This setup is still tedious; with IPv4, OpenVPN provides a more comfort-
able and efficient way to set up servers, but with IPv6 we are currently forced
to have the server run a separate daemon for every client.

OpenVPN has a number of additional features—most notably the encryp-
tion of traffic. Since these are independent of IPv6 we won’t get into the
details. The OpenVPN home page at http://www.openvpn.net/ has plenty
of documentation for more “mainstream” usage.

At this time, OpenVPN has a number of limitations with regard to IPv6: It
doesn’t configure the interfaces automatically as it does for IPv4, we can’t set
up a “big server” that deals with an arbitrary number of clients on a single
UDP port and we can’t make Solaris run IPv6 over an OpenVPN tunnel.
But in many practical cases OpenVPN provides us with the NAT-penetrating
tunnel protocol we may need.

13.4 Packet Filter Considerations

The problems and strategies we have seen in section 12.6 for encapsulating
tunnels generally apply to the tunnels in this chapter, too.

We can filter for GRE using the protocol type patterns as with encapsu-
lation. The protocol type for GRE is 47 or gre. With OpenVPN and Teredo
we can filter by UDP port number; Teredo uses port 3544 and OpenVPN
whatever it is configured to use, or 1194 if we don’t explicitly configure a port
number.

These non-encapsulating tunnels have a major problem, though: We can’t
filter by the inner protocol type. If we put the packet filter on the tunnel
exit node, then we can filter the traffic coming out of the tunnel interface,
so this case can be dealt with. But if we have a separate packet filtering
router between the tunnel nodes, then we can’t configure it to allow “only
IPv6 tunneled over GRE” or similar.

14

Advanced Tunneling Issues

So far we have avoided a number of more advanced issues related to tunneling
in general rather than a single tunneling mechanism. In this chapter we
address these more fundamental issues.

First we take a look at tunnel brokers, which automate the configuration
and management of tunnels. Then we address the interaction between tunnels
and NAT gateways and how to make the two cooperate. A major risk when
using tunnels are tunnel loops that cause a network meltdown. We take a
closer look at the problem and how to mitigate it. Next we tweak some
of the more advanced tunable parameters to make our tunnels work better.
Finally we consider some problems caused by mixing tunneled and native IPv6
connectivity.

14.1 Tunnel Brokers

Today a number of tunnel service providers exist. They provide IPv6 con-
nectivity through tunnels. Since most of their customers are stuck not only
behind NAT gateways but have their IPv4 provider dynamically assign them
their IPv4 address, these tunnel providers have since developed tools to main-
tain tunnels automatically. These tunnel brokers manage the configuration of
existing tunnel protocols so they don’t need to be handled manually. Addition-
ally, tunnel service providers have come up with some additional NAT-capable
tunnel mechanisms of their own.

So what do these tunnel brokers actually do? RFC 3053 [28] explains the
concepts in detail. For our purposes, consider an example scenario: Imagine
myself on a business trip doing IPv6 trainings as usual. In the evening I sit
down in my hotel room to do some serious Web surfing. My Internet access
is limited to IPv4 through a NAT gateway of some kind that I don’t have any
control over.

190 14 Advanced Tunneling Issues

When I start my tunnel broker client, it connects to my tunnel service
provider’s tunnel broker server using TCP over IPv4. Through some authen-
tication mechanism I first authenticate myself. Next the client and server
check what sort of connectivity I have. Is there a NAT gateway in between
or do I have a globally routed IPv4 address? Then they choose the best kind
of tunnel mechanism for me to use—either a configured 6in4 tunnel or some-
thing else that can penetrate the NAT gateway. The tunnel broker client then
configures my end of the tunnel while the server sets up the tunnel endpoint
at the far end. Additionally the tunnel broker server may tell me my IPv6
address or /48 prefix. Once the tunnel is established I have set up my IPv6
connectivity, including a globally routed address or prefix. As long as I keep
the client running, the client and server will monitor the tunnel and automat-
ically start over if it breaks down—for example if I move from my room to
the breakfast lounge (it must have been a long night again), which may be
covered by a different WLAN access point.

Two of the more innovative tunnel service providers around the globe are
SixXS in the Netherlands (http://www.sixxs.net/) and Hexago in Canada
(http://www.hexago.com/). Both provide free tunnel services to everybody.
Rather than waiting for a protocol specification they have both come up with
an implementation of the concepts from RFC 3053 and are now working on
putting them through the standardization process.

Besides the actual tunnel broker functionality both implement NAT-pene-
trating tunnel protocols. Both support some IPv6-in-UDP-in-IPv4 protocol
that is very much like a configured 6in4 tunnel except that it uses UDP/IPv4
as the outer tunnel protocol. Both provide a free, open-source implementation
of their tunnel broker client.

In a way, tunnel brokers put another abstraction layer on top of the tunnel
mechanisms we’ve seen so far. They take care of authentication and handle
changing IPv4 addresses gracefully, which has so far forced us to use Open-
VPN with all its shortcomings. Instead of forcing us to decide on the most
appropriate tunnel mechanism they take care of this automatically.

Even though the standardization of tunnel brokers is lagging behind, using
them today is perfectly feasible especially for small to medium sized sites if
no native IPv6 connectivity is available.

If tunnel broker services become more widely available around the world,
then they may eventually provide a service with all the advantages but none
of the disadvantages of 6to4 public relays.

14.2 Tunnels and NAT Gateways

So far we have considered the relationship of tunnels and NAT gateways based
on one question only: Is the tunnel protocol capable of passing through an
existing NAT gateway? But if we have some control over the NAT gateway,
then some interesting options become available.

14.2 Tunnels and NAT Gateways 191

14.2.1 Strategies

If the NAT gateway is beyond our administrative control, then there is nothing
we can do except to use a tunnel protocol that is capable of penetrating a
NAT gateway.

If we manage the NAT gateway ourselves, then we may find two options
feasible: We may be able to put the tunnel endpoint on the NAT gateway
itself or we may use reverse NAT, also called packet redirection or destination
NAT (DNAT). If either of these options is available, then we can use NAT-
incompatible tunnel protocols in spite of the NAT.

Putting the tunnel endpoint on the NAT gateway has some advantages:
It is cheap because we only need a single device—this saves both money on
hardware and time on system administration effort. It is also easy to configure
because we don’t need to set up packet redirection.

But it also has some drawbacks: Putting a tunnel endpoint on a NAT
gateway adds to its workload. As soon as security becomes an issue we also
need to configure a packet filter on the NAT gateway. With an outside in-
terface, a NAT pseudo-interface, a tunnel pseudo-interface and an interface
towards the internal networks, this is somewhat demanding. If we need cas-
caded protection, the combined NAT gateway and tunnel endpoint becomes
a single point of failure.

Using reverse NAT has the opposite properties: It is more expensive be-
cause it needs two devices that must be bought and administrated. Setting up
the redirection is usually complex because it needs to be done within packet
filter configurations.

But except for the redirection configuration it keeps the NAT gateway
simple, so packet filtering on the NAT gateway stays straightforward, too. The
tunnel end point can be placed in a DMZ, so multi-level security architectures
are feasible.

Tunneling mechanisms that embed an IPv4 address in an IPv6 address
usually won’t be able to penetrate a NAT gateway using redirection; the
NAT gateway will break the relationship between the IPv4 and IPv6 address.
In theory it may be possible to use such a tunnel anyway, but in practice
implementations usually won’t support this kind of kludge. With configured,
GRE or OpenVPN tunnels it is however possible to use reverse NAT.

14.2.2 Configurations

Figure 14.1 shows the relevant nodes in an environment using a tunnel through
a NAT gateway. We configure the tunnel nodes as usual, with one major
exception: If the remote tunnel node is located behind a NAT gateway doing
redirection, then we need to configure the NAT gateway’s public address as
the remote outer address. In the diagram, this means that the right tunnel
node will configure 192.0.2.1 as its peer, not 10.0.0.2.

192 14 Advanced Tunneling Issues

10.0.0.0/8 (Private Network) 192.0.2.0/24 (Public Network)

NAT
Gateway

Private
Tunnel
Node

Public
Tunnel
Node

.2 .3.1 .1

Fig. 14.1. Tunnels in a NAT environment

The NAT gateway needs to support redirection. In the most relevant
cases, configured and GRE tunnels, we need to do redirection by protocol
type, not by TCP or UDP port numbers as usual. How to do this depends on
the NAT gateway implementation. The example configurations below assume
a configured tunnel; for GRE, the protocol type used must be 47, or gre,
instead of 41, or ipv6.

Debian Sarge Using iptables we can enable NAT in general using the
commands

modprobe iptable_nat

iptables -t nat -A POSTROUTING -s 10.0.0.0/8 -j SNAT --to

192.0.2.1

This takes care of all traffic travelling from the left to the right tunnel node,
implementing NAT in general. If the left tunnel node initiates the traffic, this
is all it takes. But if the right tunnel node may also initiate traffic, then we
need an additional command

iptables -t nat -A PREROUTING -s 192.0.2.2 -d 192.0.2.1 \

--proto ipv6 -j DNAT --to 10.0.0.2

to enable reverse NAT for 6in4 traffic.
As usual, if we want to make this configuration permanent, we use an up

statement in /etc/network/interfaces.

FreeBSD 6.1 The two most relevant NAT implementations are natd, which
is used together with the ipfw packet filter, and the NAT implementation
within the pf packet filter.

The natd has an option -redirect_proto (note the underscore) that we
can use to set up a redirection based on protocol type. The appropriate lines
in /etc/rc.conf for our examples are

/etc/rc.conf

natd_enable=YES

natd_interface=lnc1

natd_flags="-redirect_proto ipv6 10.0.0.2"

Alternatively, using a pf rule

14.3 Nested Tunnels and Tunnel Loops 193

/etc/pf.conf

rdr on lnc1 proto ipv6 -> 10.0.0.2

achieves the same. If we want to configure filter rules here as well, then we
only need to set up rules for the already translated addresses, like

/etc/pf.conf

pass quick proto ipv6 from 192.0.2.2 to 10.0.0.2

pass quick proto ipv6 from 10.0.0.2 to 192.0.2.2

83

14.3 Nested Tunnels and Tunnel Loops

A potentially fatal problem with tunnels are routing loops that send an already
tunneled packet into the same tunnel again.

14.3.1 Network Meltdown from a Tunnel Loop

A “normal” routing loop is fairly harmless: A packet will be sent through the
loop until its time to live (IPv4) or hop limit (IPv6) counter reaches zero.
Then an ICMPv6 error is sent back to the sender. If this ICMPv6 error gets
caught in the same or another loop, it will be discarded as soon as the TTL
or hop limit expires.

With tunnels the situation is different: When a packet enters a tunnel, a
new header with a “recharged” TTL/hop limit is prepended. If the tunneled
packet somehow loops back to the tunnel entry without being untunneled
first, then it will be sent through the tunnel again—with its TTL/hop limit
reset yet again.

Debian Sarge The Linux kernel behaves differently if we don’t set an ex-
plicit TTL or hop limit: It copies the TTL or hop limit from the inner packet.
This is useful in some cases, but generally it is advisable to set an explicit
TTL. 84

During this process the packet grows with every new encapsulation. Even-
tually it is too large to pass through the tunnel since it exceeds the tunnel’s
maximum transmission unit (MTU). At this point the tunnel entry point be-
haves depending on the IP version of the outer header: With IPv4 it may
fragment the packet and send the fragments through the tunnel as two sepa-
rate packets, to enter the loop again. With IPv6, and IPv4 packets that have
the don’t fragment flag set, it sends an ICMPv6 “too big” message to the
sender which then fragments the packet itself and re-sends the fragments.

In either case the result is a network meltdown—the network is saturated
from the traffic by the single initial packet.

194 14 Advanced Tunneling Issues

14.3.2 Tunnel Loop Causes

In the simplest case a tunnel loop is caused by some misconfiguration, either
of a new tunnel or some changed static routes. If this happens, then whoever
did the configuration will usually find out quickly what happened, break the
loop and restore the network to normal operation.

With dynamic routing the situation is different: Whenever the routing
changes, some temporary inconsistencies occur until the routing converges to a
fully functional state again. As long as routers can still communicate with each
other, this will eventually solve the problem. But with a network meltdown it
is possible that routers can’t communicate with each other anymore because
the very network they want to use to do so is saturated, so the attached
nodes and switches discard packets. At this point, manual intervention is
required. If the situation is really bad, then it may be necessary to access
some network components physically, which again may take some time if no
system administrator is currently near the network.

14.3.3 Preventing Tunnel Loops

To prevent a meltdown due to a tunnel loop, we need to prevent already
tunneled packets to enter a tunnel again.

For tunneling anything over IPv6, RFC 2473 [17, section 4] introduces
an optional tunnel encapsulation limit option header that limits the nesting
level of IPv6. RFC 1853 [101, section 3.3] devises a heuristic to detect simple
tunnel loops. With all other tunnels we need to take care of the situation
ourselves.

For all practical purposes we can’t rely on any tunnel implementation to
be smart enough to prevent tunnel loops. This leaves us with four options:
Use only tunnels with distinct inner and outer protocol, like only IPv4 as
outer and only IPv6 as inner protocol, prevent tunnel loops ourselves using
a proper ingress filter on the tunnel interface, use only static routing in the
tunnel environment or just hope for the best.

Setting up an ingress filter on the tunnel interface is fairly simple if we want
to avoid passing already tunneled packets through it. But when it comes to
limiting the nesting depth of tunnels, there is no packet filter available today
with a filter syntax that lets us express such a restriction.

FreeBSD 6.1 In theory the gif interfaces use a sysctl variable called
net.link.gif.max_nesting that lets us specify the nesting depth as long
as we limit ourselves to gif tunnels. As of today, setting it to 0 will un-
fortunately disable the interface while setting it to anything larger than 0 it
apparently enables nested tunnels without restricting the nesting level.

Similarly, the gre interfaces use a variable net.link.gre.max_nesting.
85

14.4 Tunnel Parameter Tuning 195

Using static routes in a tunnel environment is a feasible alternative. As
long as our tunnel is our “default router” and we simply set the default routes
of all other routers towards it, this will effectively solve our problems.

The situation gets complicated as soon as we want to use dynamic routing
on the “untunneled” side of the tunnel but static routes for the tunnel path.
Such a setup becomes necessary if we need redundant tunnels and tunnel
routers. There is no catch-all solution to this problem, but as always with
dynamic routing, keeping the network topology clean is an essential measure.
Beyond that it helps to set up the tunnel routers with two separate interfaces,
one “inside” and the other to pass the tunneled traffic through. We need
to configure the routing daemon on the tunnel router not to announce the
routes it is directly connected to on the tunnel interface but only the routes
beyond its tunnel peer; this isn’t always possible with the lightweight RIPng
distributed with most Unixen. But as soon as we install and run a full routing
framework like Quagga we can work around this problem as well.

Setting up a dynamic router for these purposes isn’t trivial. Chapter 17
addresses the more advanced aspects of dynamic routing that we need in a
situation like this.

14.4 Tunnel Parameter Tuning

There are two tunable parameters available with many tunnels that deserve
some attention. They aren’t essential for a tunnel to work, but there are cases
where a tunnel will work better if these two parameters are adjusted to the
particular environment.

14.4.1 The Maximum Transmission Unit (MTU)

According to section 7.9, the maximum transmission unit (MTU) of an inter-
face defines how large the payload of its link-layer frame may be. When an
IP packet exceeds this size, it is split into fragments that are sent separately
to the destination address. There they are reassembled.

How the fragmentation works depends on the IP version used as the inner
protocol. IPv4 fragmentation is done at the tunnel entry point while IPv6
notifies the original sender to use smaller fragments using path MTU discovery.

In either case it is desirable that a packet is not fragmented multiple
times; fragments of fragments of fragments cause severe overhead on both the
intermediate routers as well as the tunnel endpoints.

If we know that a link with an unexpectedly small MTU exists along
the tunnel path, then we may want to set the tunnel MTU accordingly so
no packets get fragmented. It may take some experimenting on the tunnel
endpoints to ensure that no fragmented packets occur. Using brute force we
can use a packet sniffer to watch for fragmented tunnel packets coming in
while we gradually reduce the tunnel MTU.

196 14 Advanced Tunneling Issues

How we can set the tunnel MTU depends on the particular Unix. Note
that IPv6 needs an MTU of at least 1280 bytes while IPv4 allows far smaller
MTUs. Ethernet has an MTU of 1500 bytes unless it supports jumbo frames
which may exceed 8 kbytes in size.

Debian Sarge Using the generally preferred ip command,

ip link show

displays the MTUs of all interfaces and

ip link set sit1 mtu 1400

adjusts it to our needs.

FreeBSD 6.1, Solaris 10 The ifconfig command displays the MTU to-
gether with other information about the system’s interfaces. The syntax

ifconfig gif0 inet6 mtu 1400

sets the MTU. 86

There are cases where MTU tuning reduces the traffic overhead as well as
the workload on the routers dealing with the fragmentation quite noticeably.

14.4.2 Hop Limit and Time to Live (TTL) Parameters

Another tunnel parameter that we may want to tune is the IPv6 hop limit
or its IPv4 equivalent, the time to live (TTL) field. It limits the maximum
number of hops to the tunnel exit node.

When a tunnel entry point sends a packet through the tunnel, it prepends
another IP header. This IP header has its hop limit/TTL field initialized with
a configurable value. Depending on the particular Unix, the hop limit may
be set either globally or for individual tunnels; implementations differ widely
in the way they handle the hop limit.

Debian Sarge The ip command shows the TTL with the command line
arguments

ip tunnel show

and sets it according to the pattern

ip tunnel change sit1 ttl 20

for every tunnel interface individually.
As we have already seen in section 12.1.2, Linux will copy the TTL or

hop limit from the inner packet if we don’t set it explicitly. This behaviour
limits the effects of a tunnel loop to some degree but breaks applications that
explicitly control the TTL or hop limit.

14.5 Mixing Tunnels and Native Connectivity 197

FreeBSD 6.1 There are two sysctl variables called net.inet.ip.gifttl

and net.inet6.ip6.gifhlim that set the IPv4 TTL and IPv6 hop limit glob-
ally for all gif interfaces. There is no documented way to set the TTL for
6to4 or GRE tunnels.

Solaris 10 The ifconfig command shows the TTL or hop limit when we
display the interface configuration. To change it,

ifconfig ip.tun0 inet6 thoplimit 10

sets the TTL/hop limit for an individual interface and IP version. 87

Lowering the TTL/hop limit can to some degree reduce the risk of tunnel
loops caused by dynamic routing: If the route between the tunnel nodes gets
longer than usual due to some temporary routing changes, then the tunnel
temporarily breaks down, hopefully before a tunnel loop causes a meltdown.
If the tunnel end points are very far apart, we may need to increase the hop
limit accordingly.

14.5 Mixing Tunnels and Native Connectivity

In theory it is possible to mix tunneled and untunneled connectivity at a site.
Doing so isn’t quite as easy as it seems, though.

Why should anyone actually do this? In some cases we may want to
improve our traffic to sites that are currently close by with respect to the
IPv4 network topology but far away as far as IPv6 connectivity is concerned.
In particular, using a 6to4 border router to speed up traffic to 6to4 sites while
we already have native IPv6 connectivity is worth some thought. Additionally,
we might use tunnels for a fallback uplink.

So what sort of problems do we have to anticipate if we set up mixed
connectivity?

We need to be extremely careful if we use dynamic routing. And since
dynamic routing is necessary if we want to make our network connectivity
redundant, we can’t just use static routes instead. The main risk is that we
might accidentially announce “short” routes through our site even though we
don’t have much bandwidth. This problem is not so much related to tunnels
but dynamic routing in general, so we defer its discussion until chapter 17,
where we get into dynamic routing in more detail, and section 25.1, where we
consider ways to set up redundant network connectivity.

Using multiple connections makes packet filters noticeably more complex
to configure. Stateful filtering becomes extremely difficult at best if dynamic
routing redirects traffic arbitrarily around the filters. If we run multiple dif-
ferent tunnel types on a single tunnel router, packet filtering also becomes
difficult—in particular, mixing 6to4 and automatic tunnels is known to cause
serious problems; RFC 3964 [99, section 6.1] explains why.

198 14 Advanced Tunneling Issues

None of these problems are reason enough not to use multiple tunnels, or
mixing tunneled and native IPv6 connectivity. But we need to be aware of
the potential problems when we do so.

15

The Point-to-Point Protocol (PPP)

Technically, the point-to-point protocol (PPP) is not a tunnel protocol but
a point-to-point link-layer protocol originally intended for serial lines. In
practice, some implementations also support TCP or even UDP instead of
serial lines, making it possible to use PPP as a tunneling mechanism. More
important however, handling PPP is very similar to configured tunnels, so it
makes sense to take a look at it together with the tunnel protocols we have
seen so far.

In 1996, RFC 2023 [58] first extended PPP to support IPv6. Two years
later its successor RFC 2472 [59] changed a few details; it still represents the
official specification for IPv6 over PPP.

15.1 Implementations and Installation

Today there are two widely used PPP implementations: The kernel PPP
implementation by Paul Mackerras is mostly kernel-based and only uses a
userspace pppd to set up a connection while the userland PPP implementation
called ppp by Toshiharu Ohno uses a generic tunnel interface and runs entirely
in userspace. In theory both support IPv6, but in practice some ports don’t.

Debian Sarge The kernel PPP implementation included in a core installa-
tion does support IPv6.

FreeBSD 6.1 Both PPP implementations are available within a core instal-
lation, but the kernel PPP implementation doesn’t support IPv6.

Solaris 10 The kernel PPP implementation supports IPv6. The distribution
media contain it in the packages SUNWpppd, SUNWpppdr and SUNWpppdu. After
the packages are installed the kernel must be reconfigured to enable the PPP
device driver. 88

200 15 The Point-to-Point Protocol (PPP)

15.2 Basic Configuration

For demonstration purposes we use a very simple setup; figure 15.1 shows
the layout. To keep the configuration simple we use null modems as links,
configure the nodes as peers so either one can initiate a PPP session and
don’t authenticate the links.

2001:db8:fedc:1::/48

2001:db8:fedc:2::/48

2001:db8:fedc:3::/48

Debian

FreeBSD

Solaris

Fig. 15.1. The PPP test setup

Debian Sarge The configuration in /etc/ppp/options.server needs at
least the lines

/etc/ppp/options.server

lock ‖ Use UUCP-style lock files
noauth ‖ Don’t expect peer to authenticate itself
ipv6 , ‖ Don’t configure addresses manually
noip ‖ Disable IPv4 (optional)
noccp ‖ With FreeBSD as peer: Avoid incompatibility problem
nodetach ‖ We want to start this via /etc/inittab—see below

To start PPP once we we can run the command

pppd /dev/ttyS0 file /etc/ppp/options.server

from a shell.

Apparently a bug in the implementation breaks the persist option:
When the connection shuts down and then comes up again, pppd

can’t re-initialize the serial line. This makes the persist option
?

useless at least in the configuration shown here.

15.2 Basic Configuration 201

As a workaround we can use the nodetach option in the configuration and
a line in /etc/inittab like

/etc/inittab

T0:23:respawn:/usr/sbin/pppd /dev/ttyS0 file /etc/ppp/options.server

T1:23:respawn:/usr/sbin/pppd /dev/ttyS1 file /etc/ppp/options.server

for every serial interface. This will restart the pppd whenever it terminates.

FreeBSD 6.1 For our purposes most default settings are sufficient, so we
just need the lines

/etc/ppp/ppp.conf

default:

set openmode active ‖ Don’t wait for peer to initiate session
disable ipcp ‖ Disable IPv4 (optional)

serial0: ‖ We call this configuration serial0

set device /dev/cuad0 ‖ Use this serial device
serial1: ‖ . . . and the same for the second device

set device /dev/cuad1

in /etc/ppp/ppp.conf to configure the setup. Afterwards we can start ppp

for the lines either from the command line using

ppp -dedicated serial0

ppp -dedicated serial1

or using the same commands from /etc/rc.local. If we had only a single
serial line we could also set some variables in /etc/rc.conf to achieve the
same result—the details are explained in /etc/defaults/rc.conf.

Solaris 10 A minimal configuration in /etc/ppp/options.server needs
the lines

/etc/ppp/options.server

lock ‖ Use UUCP-style lock files
persist ‖ Keep running forever
ipv6 , ‖ Don’t configure addresses manually
noip ‖ Disable IPv4 (optional)
noccp ‖ With FreeBSD as peer: Avoid incompatibility problem

Following the online documentation from SUN1 we can start the interface
using a script /etc/ppp/demand with the contents

/etc/ppp/demand

#! /bin/sh

if [-f /var/run/ppp-demand.pid] &&

/usr/bin/kill -s 0 ‘/bin/cat /var/run/ppp-demand.pid‘

[Continued on next page]

1 See http://docs.sun.com/app/docs/doc/816-4555/6maoquihv?a=view.

202 15 The Point-to-Point Protocol (PPP)

/etc/ppp/demand

[Continued from previous page]
then

:

else # All pppd invocations go here.

/usr/bin/pppd /dev/cua/a file /etc/ppp/options.server

/usr/bin/pppd /dev/cua/b file /etc/ppp/options.server

fi

After running

/etc/init.d/pppd start

or a quick reboot PPP automatically starts. 89

Once the connection is set up on both sides, we should check it. If the
interface doesn’t come up as expected, then logging the link control protocol
(LCP) and the IPv6 control protocol (IPV6CP) often proves helpful.

� The interfaces on both sides must be up, running and showing a link-
local address.

� Pinging the all-node link-local multicast address ff02::1 across the
link must show replies from both endpoints.

15.3 Adding Routable Addresses and Static Routes

So far we have only set up link-local addresses. IPv4 over PPP offers a feature
that one peer can tell the other what IP address to use; this is commonly used
by ISPs to assign their customers a dynamically chosen IPv4 address. For IPv6
no equivalent feature is available. Since IPv6 addresses are usually statically
assigned, we can and must configure both peers with their own IPv6 address.

The ipv6 option we have used with pppd in the previous section only lets
us specify the local and remote interface ID, but no complete addresses. The
user PPP implementation doesn’t even let us specify an interface ID, let alone
a full address. To work around this we need to use some scripts that are run
once the PPP session is up and running.

We can also use the same scripts for another, independent purpose: To set
up static routes when an interface comes up.

Debian Sarge If either of the two scripts /etc/ppp/ipv6-up.local and
/etc/ppp/ipv6-down.local exists and is executable, then it is run when-
ever the connection is started or terminated, respectively. The environ-
ment variables PPP_IFACE, PPP_TTY, PPP_SPEED, PPP_LOCAL, PPP_REMOTE and
PPP_IPPARAM contain the interface name, the TTY device name, the TTY

15.3 Adding Routable Addresses and Static Routes 203

speed, local and remote link-local addresses and an optional parameter that
we can configure with an ipparam statement in our configuration.

A script to set up additional addresses and routes may look like this:

/etc/ppp/ipv6-up.local

#! /bin/sh

case $PPP_IFACE in

ppp0) /sbin/ip -6 addr add dev ppp0 2001:db8:fedc:12::1/64

/sbin/ip -6 route add dev ppp0 2001:db8:fedc:2::/64

;;

ppp1) /sbin/ip -6 addr add dev ppp1 2001:db8:fedc:13::1/64

/sbin/ip -6 route add dev ppp1 2001:db8:fedc:3::/64

;;

esac

Unfortunately, the name of the peer is unavailable. If we are running an
ISP, then this is most unfortunate because we can’t just configure our PPP
interfaces by using the authenticated name of the peer. In section 15.6 we
take a look at this problem.

FreeBSD 6.1 To run a script after the the connection has come up, we first
need a configuration file /etc/ppp/ppp.linkup with the contents

/etc/ppp/ppp.linkup

MYADDR6:

shell /etc/ppp/ipv6-up LABEL INTERFACE

Whenever an interface comes up, this configuration runs the shell script
/etc/ppp/ipv6-up with the label from the configuration in /etc/ppp.conf

and the interface name as its command line parameters.
The /etc/ppp/ipv6-up script then configures the additional addresses

and routes:

/etc/ppp/ipv6-up

#! /bin/sh

case $1 in

serial0) /sbin/ifconfig $2 inet6 2001:db8:fedc:23::2 up

/sbin/route add -inet6 2001:db8:fedc:3::/64 -iface $2

;;

serial1) /sbin/ifconfig $2 inet6 2001:db8:fedc:12::2 up

/sbin/route add -inet6 2001:db8:fedc:1::/64 -iface $2

;;

While the additional configuration file ppp.linkup makes the configuration
somewhat more tedious than the pppd implementation, it provides far more
data to the shell script. This makes it a superior choice when setting up a
dial-in server.

Solaris 10 The two scripts /etc/ppp/ipv6-up and /etc/ppp/ipv6-down

are run whenever a PPP link goes up or down, respectively. Pppd passes them

204 15 The Point-to-Point Protocol (PPP)

the interface name, TTY device name, TTY speed, local and remote link-local
address and possibly some additional configurable string as parameters.

A sample /etc/ppp/ipv6-up script may look like this:

/etc/ppp/ipv6-up

#! /bin/sh

case $1 in

sppp0) /sbin/ifconfig sppp0 inet6 addif \

2001:db8:fedc:13::3 2001:db8:fedc:13::1 up

/sbin/route add -inet6 2001:db8:fedc:1::/64 \

-iface 2001:db8:fedc:13::3

;;

sppp1) /sbin/ifconfig sppp1 inet6 addif \

2001:db8:fedc:23::3 2001:db8:fedc:23::2 up

/sbin/route add -inet6 2001:db8:fedc:2::/64 \

-iface 2001:db8:fedc:23::3

;;

esac

Solaris assumes PPP interfaces to be point-to-point interfaces and it expects
us to provide both the local and remote address when we configure such a
point-to-point interface. This forces us to keep track of our peers’ IP addresses
when we write such a script.

Solaris doesn’t remove the subinterfaces when an interface goes down, so
we need to clean them up in /etc/ppp/ipv6-down. A simple catch-all solution
is

/etc/ppp/ipv6-down

#! /bin/sh

/sbin/ifconfig $1:1 inet6 unplumb

90

Checking the results of the script is fairly obvious. If the script is exe-
cutable and all external commands and filenames used within are either given
as absolute pathnames or within the (usually quite restrictive) PATH, then
problems are quite unlikely.

� After the interface has come up, check that the static addresses and/or
routes are configured as expected.

15.4 Dynamic Routing Across PPP Links

Setting up routable addresses and static routes on a PPP interface is tedious,
so dynamic routing across a PPP link may be a useful alternative.

On all the Unixen shown, RIPng works without problems across PPP links.
The configuration doesn’t differ from an “ordinary” RIPng setup. RIPng

15.5 PPP and Autoconfiguration 205

uses link-local addresses between routers, so we don’t even need to configure
routable addresses on the PPP interfaces.

The only problem with dynamic routing across PPP links isn’t IPv6-
specific: In scenarios like a dial-up ISP serving a large number of customers,
dynamic routing can be used to divert traffic from one customer to another.
Generally speaking, if the PPP link connects two different security domains,
then dynamic routing is usually a bad idea.

To check the configuration, the same procedures as with “normal” dynamic
routing apply. A quick check looks like this:

� Check that the interfaces are up and running.
� Wait at least 45 seconds.
� Check the routing tables for routes that have been set up through the

PPP link.

15.5 PPP and Autoconfiguration

So far we have only used PPP between routers. But what if we connect a
host with a router using PPP? In that case we may want to support stateless
autoconfiguration across the PPP link.

In most cases, using autoconfiguration on a PPP link doesn’t pose any
problems. But some implementations consider point-to-point links unfit for
autoconfiguration and refuse to support it.

Solaris 10 There is no support for autoconfiguration over a PPP link. 91

Setting up a host doesn’t differ from the configuration we have used in
section 15.2 except that we apply it to a host instead of a router.

Configuring a router is slightly more demanding: As in section 15.3 we
need to configure a static address on it when the interface comes up. We also
need to convince the router advertisement daemon to advertise the proper
prefix on the link.

Debian Sarge Unfortunately radvd doesn’t deal with dynamically appear-
ing and disappearing interfaces. This leaves us two options: Either restart a
single, long-running radvd whenever a PPP link comes up or start a separate
radvd with its own configuration for every PPP link.

Using a single radvd for all interfaces we first need to add interface con-
figurations like

/etc/radvd.conf

interface ppp0 {

AdvSendAdvert on;

IgnoreIfMissing on; ‖ Don’t forget this; see below.
prefix 2001:db8:fedc:fed1::/64 ;

};

206 15 The Point-to-Point Protocol (PPP)

to /etc/radvd.conf. The IgnoreIfMissing statement ensures that radvd

ignores all unavailable interfaces. Additionally we need to restart radvd when-
ever a PPP link comes up. To do so we add a line

/etc/ppp/ipv6-up

/etc/init.d/radvd restart

to the /etc/ppp/ipv6-up script.
This approach has the major disadvantage that it assigns a fixed prefix to

a PPP interface, which is undesirable on a dial-in server with multiple clients.
To work around this we need to know who our peer is, so we can assign it
the prefix it needs. Unfortunately, pppd doesn’t pass the peer name to the
ipv6-up script, so this isn’t really feasible.

FreeBSD 6.1 If we configure rtadvd with the interfaces we want it to serve,
then we will get the occasional harmless error message while a link is down,
but otherwise the autoconfiguration will work across the PPP link.

Since rtadvd by default advertises the prefixes that a given interface is
configured with, it handles PPP interfaces that change their prefixes over
time correctly. This is particularly important if we set up a dial-in server that
doesn’t assign fixed interfaces to its peers. 92

Checking autoconfiguration across PPP links doesn’t differ much from
checking it over regular subnets. A few differences do exist however:

� If multiple hosts connect to a server, check with each host that it
receives the expected prefix or prefixes and configures its interface ac-
cordingly. Make double sure that the prefixes are correct for each host.

� Check that the advertising daemon doesn’t quit when a PPP interface
goes down.

15.6 Beyond a Single Interface: Operational Issues

So far we have happily ignored a number of issues that make real-world PPP
configuration such a pain.

We have skipped modem chat scripts because they are independent of the
IP protocol that we use. We have also skipped authentication, which is also
independent of the IP protocol we use. We have so far assumed that a given
PPP interface is associated with a single, fixed peer. This is fine if we are a
leaf site connecting to an ISP via PPP—unless we are also running the server
at the ISP side.

But what if we have a single PPP server with a number of serial lines that
users connect to? The association between the serial line and PPP interface
isn’t fixed, so even if we have dedicated lines to our users we never know who
is connected to which PPP interface. With a dial-in modem pool or similar

15.7 Packet Filter Considerations 207

we don’t even know who is connecting to which line. The same applies to a
PPP over Ethernet (PPPoE) setup, where the number of “lines” isn’t even
fixed.

To work around this, we need our peers to authenticate. All PPP imple-
mentations support this without problems. But we also need access to our
peer’s name when we bring up an interface. This turns out to be a problem.

Debian Sarge, Solaris 10 The pppd doesn’t pass the peer’s name to the
ipv6-up script. This makes it effectively impossible to use pppd on a
production-grade PPP server.

FreeBSD 6.1 In section 15.3 we have used /etc/ppp/ppp.linkup to run
a shell script when an interface comes up. If we extend it to pass an addi-
tional parameter USER to the ipv6-up script, then we can configure the PPP
interface depending on the connected user. 93

15.7 Packet Filter Considerations

PPP dynamically creates and configures its interfaces, so we need to set up
our packet filters accordingly.

If we set up multiple PPP interfaces, then the same problems as in the
previous section occur. To work around them we must dynamically update
the filter rules whenever an interface comes up. Fortunately all packet filter
implementations shown let us set up filter rules on interfaces that don’t yet
exist.

Both PPP implementations only run the configuration scripts after the
interface is up and running. This is unfortunate if we need to set up different
filter rules for different peers, for example if we want to set up anti-spoofing
rules. In this case we need to set up the packet filters to deny all traffic with
the possible exception of neighbor and router discovery packets before we first
bring up an interface. The script must then add custom filter rules for the
particular peer before it may set up static addresses or routes. When the
connection shuts down, we need to remove the filter rules again.

Debian Sarge The script /etc/ppp/ipv6-down is run whenever a link shuts
down. It behaves like its ipv6-up peer.

FreeBSD 6.1 From /etc/ppp/ppp.linkdown we can invoke a script when
a link shuts down the way we run a script from ppp.linkup when we bring a
link up. 94

This still leaves us with a potentially dangerous situation: If the shutdown
script fails, then it may leave the filter configuration open to attacks by the
peer connecting next to the serial line.

Part IV

Additional Base Features

16

More on Addresses

Chapter 3 provided all the information necessary to get IPv6 up and running.
But there is more to IPv6 addresses than we have seen to far. This chapter
covers a number of not so essential aspects concerning IPv6 addresses as such.

16.1 Site-local and Unique-local Addresses

In section 3.4.2 we introduced site-local and unique-local unicast addresses.
Until now they haven’t been particularly exciting, but they are quite useful
as a fallback during network renumberings.

16.1.1 From Site-local to Unique-local Addresses

Originally, the IPv6 address architecture standards (RFCs 1884 [61], 2373
[62] and 3513 [63]) defined the address range fec0::/10 as “site-local” uni-
cast addresses. They were similar to the private IPv4 addresses defined in
RFC 1918 [97] (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/24) and any-
body was free to use them for internal purposes as long as they were only
used inside a local network cloud.

Experience has shown that this approach introduces a number of problems.
RFC 3879 [71] pointed out two core causes: Address ambiguity, or multiple
machines using the same address, and an ill-defined concept of “site”. Prob-
lems related to the “site” concept are mostly a matter of interpretation of
the term “site” in a particular context. But even if your network might be
considered a “site” by whatever definition, the more serious problems related
to the ambiguity of addresses remain. Some of them, like the trouble of set-
ting up “multi-sited routers”, can be trivially solved by not using site-local
addresses for inter-site or global purposes—like NAT in the IPv4 world. But
site-local addresses that leak into dynamic routing tables and the DNS are
more serious. To solve these problems it was necessary to make even private
addresses unique.

212 16 More on Addresses

Discussions sprang up to devise an address range for private purposes
where addresses were not ambiguous; they just wouldn’t be globally routed.
Originally, it was planned to use the fc00::/8 address range to assign /48

prefixes by a central authority and fd00::/8 to pick random /48 prefixes
without central management, thus making them unique only by probabilistic
standards. Eventually, RFC 4193 [66] defined the fd00::/8 prefix accord-
ingly. Until now, there has been neither an official standard nor a central
management authority for the fc00::/8 address range. RFC 4291 [64], the
successor of RFC 3513, formally declares the old site-local prefix fec0::/10

obsolete.
Throughout this book, we call both site-local and unique-local addresses

site-scoped addresses.

So what exactly is the difference between the old fec0::/10 and the new
fd00::/8 prefix? With fec0::/10, the majority of people used “short” pre-
fixes like fec0:0:0::/48 for their internal purposes, causing these addresses
to be ambiguous. The new fd00::/8 is used differently: Everybody is free
to choose a randomly chosen /48 prefix from this range. Everybody choosing
a prefix randomly can be confident that nobody else uses this prefix, which
effectively solves the ambiguity problem.

Everybody “randomly” picking the fd00:0:0::/48 prefix will join the
group of administrators that perpetuate the address ambiguity problems
among themselves.

16.1.2 What is a “Site”?

There have been numerous discussions about the definition of the term “site”.
Instead of attempting to define the term, it has proven more useful to list a
number of criteria that make a network a “non-site”.

1. If its routing and DNS aren’t managed by a single administrative author-
ity, it isn’t a site.

2. If it isn’t contiguous, it isn’t a site.
3. If it contains “sub-sites”, it isn’t a site.
4. If it is part of a “super-site” then it isn’t a site.
5. If it overlaps with another “site”, then it isn’t a site.
6. If it “shares” a node with another “site”, then it isn’t a site. Nodes never

belong to more than one site.

If any of these criteria applies, using site-scoped addresses will cause trouble.
So don’t use them and don’t consider your network a site.

16.1.3 When to Use Unique-local Addresses

What are site-scoped addresses good for? First of all, don’t use them for
non-local purposes. IPv6 addresses aren’t scarce, so there is no need to abuse
them for NAT and similar kludges.

16.1 Site-local and Unique-local Addresses 213

In virtually all cases you want to get globally routed addresses if you have
any Internet6 connectivity at all. But since your upstream provider may
occasionally require you to renumber your network, consider using them as a
fallback especially during a renumbering event.

Remember, non-routeability of these addresses was never intended as a
security feature. If you misconfigure one of your routers, your machines may
still be reachable from the outside using exactly these addresses.

But still, putting all network printers in a subnet that doesn’t have global
addresses won’t exactly hurt either.

16.1.4 Routing Configuration

Generally, unique-local addresses can be used with dynamic routing like global
addresses. But on border routers we need to stop local routes from leaking to
the outside. To prevent the propagation of unique-local addresses we configure
our router like this:

Debian Sarge/Quagga Adding the line

/etc/quagga/ripngd.conf

distribute-list global-only out eth0

immediately after the router statement and

/etc/quagga/ripngd.conf

ipv6 access-list global-only permit 2000::/3

ipv6 access-list global-only deny any

at the end restricts all routing announcements to global addresses on interface
eth0.

FreeBSD 6.1 Invoking route6d with the option -O 2000::/3,lnc0 limits
interface lnc0 to announcing global routes. To configure this permanently,
we can add the option to the ipv6_router_flags variable in /etc/rc.conf.

Solaris There seems to be no way to make the in.ripngd restrict the routes
it propagates. 95

16.1.5 DNS Setups

Even more serious than leaking routes are DNS servers that return site-scoped
addresses to the outside; connections may be established more slowly because
an outside client may first try to use a site-scoped address to reach a server
inside before falling back to a global address.

To work around this problem we need two name servers: One providing the
full data to our internal machines and another only delivering global addresses
to requests from outside. While this “split namespace” approach is admittedly
expensive it is a well-established design used in many larger organizations.

214 16 More on Addresses

With a bit of shell scripting it is generally quite simple to filter out all internal
data from the internal name server and copy only the relevant data to the
externally visible one.

16.2 IPv4-mapped IPv6 Addresses

In section 6.3 we first encountered IPv4-mapped IPv6 addresses, or mapped
addresses for short. Now we take a closer look at them.

16.2.1 Making an IPv6 Server Support IPv4

According to RFC 3493 [45, section 3.7], mapped addresses allow a server
process to serve both IPv4 and IPv6 clients through the same IPv6 socket.

When the node that hosts such a server receives an IPv4 packet at the
port that the server listens on, then the kernel translates the IPv4 addresses
into IPv6 addresses by appending the 32 bit IPv4 addresses to the IPv6 prefix
0:0:0:0:ffff::/96. Using these it passes the packet through the transport
layer to the server process, which considers them ordinary IPv6 traffic. When
the server sends data back, the network layer extracts the embedded IPv4
addresses again and sends out the data as IPv4 packets.

Figure 16.1 shows an example. The client on the left-hand side with an
IPv4 address 192.0.2.99 tries to reach the server on the right-hand side at its
IPv4 address 192.0.2.1, for example at port 80 (HTTP) to get a web page.
It obtains a TCP socket from the kernel and opens a connection to the server.
The client side kernel wraps up the TCP communication in IPv4 packets with
a source address 192.0.2.99 and a destination address 192.0.2.1 and sends
them across the network. The server kernel receives the packets. Looking

Client Application

Client Kernel

Src: 192.0.2.99

Dst: 192.0.2.1

Src: 192.0.2.1

Dst: 192.0.2.99

Server Application

Server Kernel

Src:
::ffff:192.0.2.99

Dst:
::ffff:192.0.2.1

Src:
::ffff:192.0.2.1

Dst:
::ffff:192.0.2.99

Src: 192.0.2.99, Dst: 192.0.2.1

Src: 192.0.2.1, Dst: 192.0.2.99

Fig. 16.1. IPv4-mapped IPv6 addresses in action

16.2 IPv4-mapped IPv6 Addresses 215

up the port number it realizes that no IPv4 server socket listens on that
port but an IPv6 socket with enabled IPv4-mapped IPv6 support does. It
changes the address information attached to the packets to contain the local
address ::ffff:192.0.2.1 and the remote address ::ffff:192.0.2.99 and
passes them through the transport layer to the server application. When the
server application sends data back it will use these addresses as source and
destination address, respectively. The server kernel intercepts them and turns
them back to the IPv4 addresses they contain before passing any packets to
the network.

While this description glosses over some interesting details concerning the
communication between the network and transport layers within the server
kernel, it explains how these addresses work.

From a programmer’s point of view, using mapped addresses simplifies
server programming quite noticeably. When a server first starts to listen on
a port for incoming packets, it just needs to tell the operating system that it
wants to support mapped addresses. From that point on it only deals with
IPv6-based connections and doesn’t need to bother about IPv4 anymore; if it
wants, it can still figure out which connections are using mapped addresses.
But otherwise it simply provides its service to both IPv4 and IPv6 without
any extra effort.

16.2.2 Operational Aspects

From an operational point of view, mapped addresses are occasionally more
troublesome.

We have already seen in section 6.3 that the netstat and lsof commands
with Linux won’t list server sockets that have enabled mapped addresses as
open IPv4 sockets. A system administrator who doesn’t care about IPv6
may thus never realize that some service is available via IPv4. Jeroen Massar
recently proposed a patch to netstat to change this behaviour but it remains
to be seen if and when this patch will make its way into the regular source
base.

According to RFC 3493 [45, section 5.3] mapped addresses must not be
enabled by default. Many implementations provide a global switch to control
this behaviour. What’s worse, some of them have mapped addresses enabled
by default. With applications that expect the operating system to conform
to the standards and don’t explicitly disable mapped addresses this can cause
serious problems. Simply setting the system-wide switch to disable mapped
addresses by default may break any packages that implicitly rely on mapped
addresses to be enabled.

Debian Sarge By default, mapped addresses are enabled. There is a
sysctl variable that controls this behaviour. The command

sysctl -w net.ipv6.bindv6only=1

216 16 More on Addresses

or the equivalent setting in /etc/sysctl.conf disables mapped addresses as
the default setting.

FreeBSD 6.1 As the standard requires, mapped addresses are disabled by
default. We can change this behaviour through the sysctl variable called
net.inet6.ip6.v6only, which is set to 1 by default.

Solaris 10 Mapped addresses are enabled by default. There is no docu-
mented way to disable this behaviour. 96

When configuring a packet filter, mapped addresses should always be fil-
tered; they are only used between the kernel and local application processes.

16.3 Dynamically Changing Interface IDs

Using a globally unique interface ID poses a security risk: If a node keeps
moving between networks, then a strategically placed attacker is able to track
its movements within the network topology just by tracking the interface ID.

16.3.1 The “Road Warrior” Problem

Consider the average “road warrior” as an example. He travels from one place
to another, using whatever network connectivity available wherever he is. He
keeps however reading his e-mails using IMAP to his home server, or a public
mail service provider.

Now assume an attacker to be located close to this mail server. Even when
the mail traffic is encrypted, it is possible for the attacker to analyze traffic by
interface IDs. If the attacker figures out the interface ID of the road warrior,
then he can always discover the location of the road warrior by simply looking
up the last packet with the matching interface ID; the subnet prefix tells down
to the subnet where the road warrior has been last seen, network-wise.

16.3.2 Temporary Addresses

To solve this particular issue, RFC 3041 [90] devises an optional mechanism to
provide for periodically changing interface IDs that make this kind of track-
ing infeasible. The RFC is titled “Privacy Extensions for Stateless Address
Autoconfiguration in IPv6”, therefore this mechanism is often referred to as
privacy extensions. The addresses are often called temporary addresses. They
are configured in addition to the addresses configured via autoconfiguration.

Note that changing interface IDs don’t solve the similar problem that small
sites and home users have with regard to their network prefix. Making that
prefix change to hide from what site certain traffic originates is an entirely
different issue; either use anonymizing proxies for your traffic or have your
ISP dynamically assign you a different prefix every time you connect to the
Internet6.

16.3 Dynamically Changing Interface IDs 217

In more detail, this is how temporary addresses work: When an interface
is first enabled, it does the usual autoconfiguration. It then creates a first
random interface ID; this interface ID isn’t globally unique so, according to
the interface ID format explained in section 4.5.3, the global bit (bit 7) in the
first byte is always set to zero. This is repeated for a maximum of five times
if duplicate address detection indicates that the intended address is already
in use.

The preferred and valid lifetimes are initially set to some configurable
values (usually one day and one week, respectively) minus a random value
of up to 10 minutes. Router advertisements will lower these values, but not
increase them. When the preferred lifetime expires and the address becomes
deprecated, then a new temporary address is created.

In theory it is possible that a temporary address is chosen that “belongs”
to another machine which has been manually configured but is down when
the duplicate address detection checks the address. This “problem” is mostly
academic, but consider putting statically configured hosts and those using
temporary addresses in separate subnets.

For the full specification, see RFC 3041.

16.3.3 Performance Considerations

What are reasonable values for the lifetime configurables? Since they are
lowered by a random value of up to 10 minutes, the original values must
obviously be larger than that. But there is another issue that we need to take
into consideration: The number of addresses configured at a time.

Neighbor discovery requires for every address that we also subscribe to
the associated solicited-node multicast address. Since multicasts are usually
filtered in hardware both within a link-layer switch and the network card we
must take care not to subscribe to too many such multicast addresses: If the
hardware can’t handle the number of subscriptions itself, then we receive all
packets in the subnet and the kernel needs to do the filtering. Depending on
the network traffic in the subnet this can be a major performance hit.

In addition, some implementations have a statically configurable limit im-
posed on the number of unicast addresses simultaneously configured on an
interface.

Most applications expect addresses to be static, so we can’t make the valid
lifetime arbitrarily small; otherwise applications will break when an address
becomes invalid and the connections that still use it fail.

The number of configured interfaces is effectively dependent on the number
of advertised prefixes and the ratio of valid and preferred lifetime settings.
Assuming that we know the number of prefixes #p, the time we need to keep
a deprecated address valid td and the maximum preferred lifetime tp, we can
compute the maximum number of addresses on the interface #a as

#a = #p

(
td

tp − 600s
+ 2

)

218 16 More on Addresses

including the link-local address. If we want to minimize the preferred lifetime
setting based on a fixed maximum number of addresses on an interface, this
is equivalent to

tp =
td

#a

#p
− 2

+ 600s

and the valid lifetime setting tv is trivially tv = tp + td + 600s, the sum of
the preferred lifetime setting, the required deprecated lifetime and the ten
minutes that may be randomly subtracted from the preferred lifetime.

If you try to minimize the preferred lifetime setting, keep in mind that you
may need to configure additional prefixes temporarily when you do a network
renumbering.

In general it is probably best to set the preferred lifetime to at least two
hours. But even then you will probably have to lower the valid lifetime setting
to a level that may upset a number of applications. Making the valid lifetime
setting more than five times as large as the preferred lifetime setting is likely
to make life difficult just from the number of addresses configured at any time.

Finally, if it doesn’t seem to make sense to you to optimize these settings,
just leave them as they are. Or don’t use temporary addresses at all—this is
an optional feature, not a mandatory one.

16.3.4 Configuration and Operation

How to check, enable and configure temporary addresses depends on the par-
ticular Unix again.

Debian Sarge There is no standardized way to configure temporary ad-
dresses. Provided that the ipv6 module has been loaded via /etc/modules

before the interface is configured, the lines

/etc/network/interfaces

auto eth0

iface eth0 inet manual

up /sbin/ip -6 link set eth0 up

up /sbin/sysctl -w net.ipv6.conf.eth0.use_tempaddr=1

Change and enable the next lines to configure the lifetimes

up /sbin/sysctl -w net.ipv6.conf.eth0.temp_prefered_lft=86400

up /sbin/sysctl -w net.ipv6.conf.eth0.temp_valid_lft=604800

in /etc/network/interfaces do the trick; the first sysctl variable enables
temporary addresses while the second and third set the preferred and valid
lifetimes in seconds, respectively. The lifetime values shown here are the
defaults (one day and one week). Note that “prefered” in temp_prefered_lft

is written with a single “r” instead of the more customary “rr”.

16.3 Dynamically Changing Interface IDs 219

The temporary addresses can be observed using either ifconfig or ip.
Since ifconfig doesn’t show the lifetimes, ip is strongly preferred. Tempo-
rary addresses are marked as “secondary”. Doing an ip -6 addr show eth0

reveals a minor problem: The addresses are listed multiple times.

FreeBSD 6.1 Temporary addresses are controlled via sysctl. To enable
temporary addresses, we put these lines into /etc/sysctl.conf:

/etc/sysctl.conf

net.inet6.ip6.use_tempaddr=1 ‖ Enable temporary addresses
net.inet6.ip6.temppltime=86400 ‖ Default value (1 day)
net.inet6.ip6.tempvltime=604800 ‖ Default value (1 week)
net.inet6.ip6.prefer_tempaddr=0 ‖ Default value (don’t prefer)

The preferred and valid lifetimes can be adjusted as needed. Setting the
prefer_tempaddr variable to 1 will change the system behaviour so that
outgoing packets will use a temporary address by default. As we will see
below, this behaviour may break applications.

There is no way to control this behaviour for individual interfaces.
Temporary addresses are displayed using ifconfig -a. They are marked

as “temporary”. The additional option -L displays the lifetimes as well.

Solaris 10 The in.ndpd takes care of temporary address handling. It ex-
pects its configuration in /etc/inet/ndpd.conf. We can either enable tem-
porary addresses by interface or like this

/etc/inet/ndpd.conf

ifdefault TmpAddrsEnabled true

ifdefault TmpValidLifetime 86400 ‖ Default value (1 day)
ifdefault TmpPreferredLifetime 604800 ‖ Default value (1 week)

for all interfaces. We can check the addresses configured using ifconfig where
they are tagged as “temporary” but as already explained in section 4.5.1 there
is no way to display the current lifetimes. 97

Since temporary addresses are meant to improve privacy, it doesn’t make
sense to put them into the DNS—at least not to make them globally visible.
If we have a name server that only serves local clients, then it might make
sense to put the addresses there for debugging purposes, but so far no readily
available tools exist to do so.

Dealing with addresses that can’t be resolved to host names by the DNS
may complicate troubleshooting some problems. What’s worse, the more often
these addresses change, the harder it is to track down the machine causing
a problem. It remains to be seen how troublesome temporary addresses will
eventually prove.

16.3.5 Using Temporary Addresses

According to RFC 3484, temporary addresses must only be used if the pro-
gram explicitly requests them. If they were used automatically, applications

220 16 More on Addresses

that assume addresses to be fixed or expect a working reverse DNS entry
would break.

At the time of this writing no standardized way exists to let an application
make the operating system use a temporary address on its outgoing connec-
tions. A working draft exists, but it is neither formally agreed upon nor
implemented yet. Applications might enumerate all of a systems addresses
and filter by the global bit to look for temporary address themselves, but
doing so is tedious.

As a workaround to this dilemma, some Unix implementations provide a
global setting that overrides the default behaviour of using permanent ad-
dresses. Using this may cause problems, but if we really need temporary
addresses, then this is most likely the way to go.

Debian Sarge Linux prefers temporary over permanent addresses on inter-
face eth0 if we set the sysctl variable net.ipv6.conf.eth0.use_tempaddr

to 2 instead of 1.

FreeBSD 6.1 The sysctl variable net.inet6.ip6.prefer_tempaddr con-
trols the use of temporary addresses. It defaults to 0, but if we set it to 1,
FreeBSD will prefer to use temporary addresses for outgoing traffic. 98

16.4 Address Selection Algorithms

Since IPv6 interfaces usually have multiple addresses assigned to them, it
becomes non-trivial to choose both the local source address as well as the
“best” remote destination address for a packet. RFC 3484 [26] considers this
problem.

Address selection happens in two different situations: The kernel picks a
source address for a packet when it needs to send a packet to a given desti-
nation and the sending application didn’t provide an explicit source address;
from a coder’s point of view, the application didn’t call bind(2) to set the
source address.

When an application wants to send a packet to a destination, then it
needs to specify the destination address. If it uses the resolver library to
resolve a domain name into an address, then the resolver returns an entire
list of candidate addresses; the program uses the getaddrinfo(3) library
function to request this list. The application should then try to use each of
these candidate destination addresses in turn until it succeeds in sending the
packet. To minimize the number of unsuccessful attempts, the resolver sorts
the list of addresses such that the ones most likely to succeed will appear first
in the list. It is however left to the application to use the list in this order; if
it wants to rearrange the order or only uses part of the addresses, doing so is
perfectly valid.

16.4 Address Selection Algorithms 221

16.4.1 The Address Selection Policy Table

Both algorithms use a policy table to choose the best address. The default
policy table as of RFC 3484 looks like table 16.1. For a given address we search

Table 16.1. The default address selection policy table (from RFC 3484 [26])

Prefix Precedence Label

::1/128 50 0
::/0 40 1
2002::/16 30 2
::/96 20 3
::ffff:0:0/96 10 4

for the longest matching prefix in the first column as we would in a routing
table. The second column then yields a precedence value for the address and
the third a label. These two values are then used by the algorithms later on.

It may be slightly surprising to see the IPv4-mapped addresses in this
table. But getaddrinfo(3) can be asked to return both IPv4 and IPv6
addresses, so it does make sense to list them here. IPv4 addresses will be
considered along with IPv6 addresses using their IPv4-mapped IPv6 repre-
sentation.

16.4.2 Source Address Selection

The source selection algorithm computes a single “best matching” source ad-
dress for a given destination address. It starts with all local addresses as
candidate source addresses and then filters them according to these (slightly
simplified) rules.

1. If the destination address is also a candidate source address, discard all
other candidates.

2. Discard all candidates with inappropriate scope.
3. Discard deprecated addresses if preferred ones are still available.
4. With mobile IPv6, discard “care-of addresses” (we’ll learn about mobile

IPv6 in chapter 22).
5. If a candidate address is assigned to the interface that we’d reach the des-

tination through, then discard all candidates assigned to other interfaces.
6. If a candidate exists that is matching the same label in the policy table as

the destination address, then discard all candidates with a different label.
7. Prefer permanent (“public”) addresses over temporary “privacy exten-

sion” addresses unless the application demands otherwise.
8. Prefer addresses that share the longest prefix with the destination.
9. Choose one of the remaining addresses in whatever implementation-de-

pendent way.

222 16 More on Addresses

From a system administrator’s point of view we should only need to influence
this algorithm through the labels in the policy table, but as we have seen in
the previous section, some implementations let us interfere with the choice of
temporary over permanent addresses on a global basis.

16.4.3 Destination Address Ordering

The destination address selection algorithm behaves differently in that it
doesn’t return a single address but rather sorts the list of destination ad-
dresses.

Before the ordering algorithm starts it first obtains an unsorted list of
destination addresses from the resolver library. For each destination address it
computes the associated source address using the algorithm from the previous
section. Then it sorts the destination addresses according to these criteria:

1. Prefer addresses that have a usable source address over those that don’t
or are otherwise unreachable, for example when an interface is down or
no usable route to them exists.

2. Prefer addresses that have the same scope as their associated source ad-
dress.

3. Prefer destination addresses with a source address that is preferred over
those with a source address that is deprecated.

4. Prefer “home addresses” over “care-of addresses”; again, this refers to
mobile IPv6.

5. Prefer addresses where the destination address and its source address have
the same label in the address selection policy table.

6. Prefer destination addresses with a high precedence in the policy table.
7. Prefer native addresses over tunnel addresses like 6to4 addresses.
8. Prefer addresses with a small scope.
9. Prefer addresses with a long common prefix between the destination ad-

dress and the associated source address.
10. Prefer addresses in the order of the original list returned from the resolver.

Together these criteria let the resolver library sort all destination addresses
in a fully deterministic order.

16.4.4 Tuning the Policy Table

In most cases the default policy table is perfectly reasonable and shouldn’t be
modified. But in some cases it may be useful to tune it to a local network’s
peculiarities.

If we use multiple prefixes in our local site, we may want to give all of them
a high precedence and a common label to ensure that traffic within our site
uses these addresses. If we want to prefer IPv4 over IPv6, then we increase
the precedence of the IPv4-mapped addresses.

16.5 Stateless Autoconfiguration Tuning 223

How the table is manipulated as usual depends on the particular imple-
mentation.

Debian Sarge There is no documented way to manipulate the default po-
licy table.

FreeBSD 6.1 The command ip6addrctl controls the policy table similar
to a routing table or packet filter rule set.

Using it without arguments displays the current policy table. To add an
entry,

ip6addrctl add 2002:c000:205::/48 45 999

associates the prefix 2002:c000:205::/48 with the precedence 45 and the
label 999 while

ip6addrctl delete 2002:c000:205::/48

deletes the line again. Additionally,

ip6addrctl flush

deletes the entire table and

ip6addrctl install /etc/ip6addrctl.conf

installs a configuration table from the file /etc/ip6addrctl.conf.
If we want to install a custom configuration from boot, we put it into

/etc/ip6addrctl.conf and set the variable ip6addrctl_enable=YES in
/etc/rc.conf.

Solaris 10 The command ipaddrsel without arguments displays the policy
table. Doing so reveals that Solaris doesn’t use numeric values for the labels
but arbitrary strings.

To change the table we need to read it from a configuration file like

ipaddrsel -f /etc/inet/ipaddrsel.conf

which loads it from /etc/inet/ipaddrsel.conf, which is the configuration
file used at boot. Finally, we can run

ipaddrsel -d

to revert to the default policy table.
99

But since the policy table needs to be changed on all machines individually,
doing so is an expensive effort that should be avoided if possible.

16.5 Stateless Autoconfiguration Tuning

In section 4.3 we have seen how stateless autoconfiguration provides hosts
with all the information they need to configure their addresses and default

224 16 More on Addresses

routers. So far we have assumed that the router advertisement daemon uses
reasonable defaults for a number of parameters. Now we take a closer look at
some of its tunables.

The exact meaning of the individual tunables is defined in RFCs 2461 [91]
and 2462 [110].

As usual, different Unixen have different advertisement daemons that are
configured differently.

Debian Sarge The radvd needs a configuration file /etc/radvd.conf. All
configuration is specific to individual interfaces. We have already seen exam-
ples in section 4.3.3, like

/etc/radvd.conf

interface eth0 {

AdvSendAdvert on;

prefix 2001:db8:fedc:abcd::/64 { };

};

Interface-specific parameters are configured like the AdvSendAdvert flags
above. For individual prefixes we can set more parameters in the braces
following the prefix; so far the default settings were sufficient so the braces
after the prefix statement were empty.

FreeBSD 6.1 So far we ran the rtadvd daemon without explicit configu-
ration. Without a configuration file it simply assumes that all prefixes con-
figured on a router’s interfaces are to be advertised and all tunables are set
to their default values; we just controlled the list of interfaces it serves on
the command line, but even that isn’t strictly necessary. If we create a confi-
guration file /etc/rtadvd.conf, then we can control the tunable parameters
with it. The rtadvd will still use the prefix information it obtains from the
interface configurations unless we start it with the additional option -s to
disable this behaviour.

The configuration uses termcap syntax, so this is probably the perfect
occasion to point out that the Linux radvd is also available from the ports
collection. As a starting configuration we explicitly set all tunables to their
default settings like this:

/etc/rtadvd.conf

default:\

:chlim#64:raflags#0:rltime#1800:rtime#0:retrans#0:\

:pinfoflags="la":vltime#2592000:pltime#604800:mtu#0:

lnc0:\

:addr="2001:db8:fedc:abcd::":prefixlen#64:tc=default:

For every interface there exists a single configuration line. Continuations are
indicated by a trailing backslash. Individual parameters are separated by
colons. Empty parameters are ignored, so after a continuation we can start a

16.5 Stateless Autoconfiguration Tuning 225

line with white space and another colon to make the configuration more read-
able. Numeric values are assigned using a hash mark “#” and strings using an
equal sign “=”. Strings that contain colons must be quoted in double quotes.
The special parameter tc defines an entry that contains default settings to be
inherited; it must be the last parameter in a configuration.

Solaris 10 The in.ndpd is unusual because it implements router discovery
for both hosts and routers as well as the RFC 3041 privacy extensions. If
no configuration file /etc/inet/ndpd.conf exists, is empty or doesn’t set the
AdvSendAdvertisements flag on an interface, then the node will be considered
a host.

Configuration is done per interface or per prefix. Additionally, default
settings for all interfaces and prefixes can be defined. Every prefix or interface
is configured in a single configuration line; a trailing backslash indicates that
the next line is a continuation of the current. Prefix configurations start
with prefix 2001:db8:fedc:abcd::/64 or prefixdefault for the default
prefix configuration. Interface configurations similarly start with if pcn0 or
ifdefault for the default interface configuration. 100

16.5.1 Tuning the Advertising Interval

Advertising routers periodically send unsolicited router advertisements. To
avoid synchronization effects, the time between advertisements is randomly
chosen between a minimum and maximum value. In highly volatile environ-
ments it may be useful to shorten these intervals if hosts are often connected
to different environments—in theory hosts should send router solicitations
whenever their network connectivity changes, but in practice it may be diffi-
cult to detect a change in network connectivity on certain media or with some
device drivers.

According to RFC 2461 [91, section 6.2.1] the maximum interval (Max-
RtrAdvInterval) between unsolicited advertisements defaults to 600 seconds.
It must be within the range from 4 to 1800 seconds. The minimum interval
(MinRtrAdvInterval) defaults to 0.33×MaxRtrAdvInterval, or 200 seconds
with the default maximum interval. Its permissible range is from 3 seconds
to 0.75×MaxRtrAdvInterval.

Debian Sarge The intervals can be configured as

/etc/radvd.conf

interface eth0 {

MaxRtrAdvInterval 30

MinRtrAdvInterval 5

[. . .]
};

FreeBSD 6.1 The parameters are called mininterval and maxinterval.
We can be set them like

226 16 More on Addresses

/etc/rtadvd.conf

default:\

:mininterval#5:maxinterval#30:

or similar.

Solaris 10 The intervals are set per interface using a configuration like

/etc/inet/ndpd.conf

ifdefault MaxRtrAdvInterval 30 MinRtrAdvInterval 5

101

By default the minimum interval is set to 0.33×MaxRtrAdvInterval. If we
set the maximum interval to anything less than 10 seconds, then the minimum
interval will default to less than 3 seconds, so we must also set the minimum
interval to an acceptable value. Depending on the implementation the daemon
will otherwise refuse to start (Debian Sarge, FreeBSD 6.1) or violate the
standard (Solaris 10).

Testing the configuration is fairly straightforward:

� Make sure that the router advertisement daemon is actually running.
� With a packet sniffer watch for the router advertisements and how

often they are sent.

16.5.2 Per-interface Information

Router advertisements contain a variety of information that we can configure
to our needs. Some of them relate to an individual interface and others to the
prefixes advertised. First we consider the interface-specific fields.

The most important is the router lifetime, which defines for how much
longer a router is willing to serve as a default router. Setting the lifetime to
zero tells the hosts not to use the router as a default router at all—when we
built our single-legged routers in section 4.3.3 we should have set this to zero.
When a router is shut down it should send a final router advertisement with
this value set to zero. Permissible non-zero values are from the maximum
router advertisement interval up to 9000 seconds, or 2.5 hours. The router
lifetime defaults to three times the maximum router advertisement interval.

RFC 4191 [27] introduced the 2 bit router priority field. It defaults to 0,
or medium priority, and can be changed to 1 for high or −1 for low priority.

We can also set the current hop limit field and the link MTU option. A
host will initialize the hop limit of an outgoing packet with the current hop
limit, or to its default value (usually 64) if the router sets this field to zero.
On link layers that have a variable MTU, the link MTU option is used to set
the MTU on the attached interface.

16.5 Stateless Autoconfiguration Tuning 227

In rare cases it may also be interesting to distribute non-standard timing
parameters for neighbor discovery and neighbor unreachability detection. The
reachable time field sets the time (in milliseconds) that a neighbor discovery
cache entry stays “reachable”. The retransmit timer, also in milliseconds,
specifies the time between consecutive neighbor discovery messages during
address resolution and neighbor discovery. Both may be set to zero to indicate
that they don’t contain any valid data.

The managed flag and other stateful configuration flag are used with
DHCPv6 and covered in chapter 19. Finally, RFC 3775 [75] introduced a
home agent flag that identifies a router as a mobile IPv6 home agent; we’ll
take a look at mobile IPv6 in chapter 22.

Debian Sarge We configure the interface-specific fields like this:

/etc/radvd.conf

interface eth0 {

AdvSendAdvert true;

AdvDefaultLifetime 9000; ‖ Router lifetime (seconds)
AdvDefaultPreference medium; ‖ Router priority; also “low” or “high”
AdvCurHopLimit 96; ‖ Current hop limit
AdvLinkMTU 1400; ‖ Link MTU
AdvReachableTime 3000; ‖ Reachable time (milliseconds)
AdvRetransTimer 50; ‖ Retransmit timer (milliseconds)
[. . .]

}

FreeBSD 6.1 A sample configuration might look like this:

/etc/rtadvd.conf

lnc0:\

:rltime#9000:\ ‖ Router lifetime (seconds)
:raflags="":\ ‖ Router flags; see below
:chlim#96:\ ‖ Current hop limit
:mtu#1480:\ ‖ Link MTU
:rtime#3000:\ ‖ Reachable time (milliseconds)
:retrans#50: ‖ Retransmit timer (milliseconds)

The raflags parameter is a string that may contain either a “h” or “l” char-
acter to indicate high or low router preference; it may also contain additional
letters related to DHCPv6.

Solaris 10 The configuration is similar:

228 16 More on Addresses

/etc/inet/ndpd.conf

if pcn0 \

AdvSendAdvertisements true \

AdvDefaultLifetime 9000 \ ‖ Router lifetime (seconds)
AdvCurHopLimit 96 \ ‖ Current hop limit
AdvLinkMTU 1480 \ ‖ Link MTU
AdvReachableTime 3000 \ ‖ Reachable time (milliseconds)
AdvRetransTimer 50 ‖ Retransmit timer (milliseconds)

Solaris doesn’t yet support the router priority flags, which were added to the
specifications only recently. 102

Testing the configuration is quite simple if we have a packet sniffer in the
subnet.

� Start the packet sniffer.
� Start the router advertisement daemon.
� Check that the router advertisements show the expected properties.

16.5.3 Subnet Prefix Information

Beyond the interface-specific information, router advertisements contain some
information about every subnet prefix they advertise.

Obviously, the prefix itself must be included. Together with the prefix, the
prefix length is sent; even though RFC 4291 [64] requires the prefix length of
every subnet to be 64 bits, this is explicitly included.

We have already learned about the preferred and valid lifetimes and their
role with stateless autoconfiguration.

Additionally, three flags are available. The on-link flag (sometimes called
L-bit) indicates that all addresses with the given prefix are connected to the
subnet; it is normally set to 1. The autonomous flag (also called A-bit) is
normally set to 1 to mark the prefix as suitable for stateless autoconfiguration,
which is called “autonomous” address configuration in RFC 2461 [91].

The last one, called M-bit, is used for mobile IPv6.

The flags are usually not relevant. But network renumberings make it
necessary to set the preferred and valid lifetimes. According to RFC 2461 [91,
section 6.2.1] implementations must provide the means to specify the lifetimes
both as a time relative to the moment when the advertisement is sent, like “two
hours”, and an absolute time by when the lifetime expires, like “10/10/2006
0:00 GMT”. In practice, not all implementations let us configure the lifetimes
as absolute values.

Debian Sarge The configuration for a single prefix looks like this:

16.5 Stateless Autoconfiguration Tuning 229

/etc/radvd.conf

interface eth0 {

AdvSendAdvert on;

prefix 2001:db8:fedc:abcd::/64 {

AdvPreferredLifetime 0; ‖ Default value is 7 days
AdvValidLifetime 600; ‖ Default value is 30 days
AdvOnLink on; ‖ Default setting; could also be “off”
AdvAutonomous on; ‖ Default setting; could also be “off”

}

}

There is no way to set fixed expiration dates for the preferred and valid life-
times.

FreeBSD 6.1 The configuration for a single prefix looks like this:

/etc/rtadvd.conf

lnc0:\

:addr="2001:db8:fedc:abcd::":\‖ The first prefix. . .
:prefixlen#64:\ ‖ . . . and its length
:pltime#7200:\ ‖ The pltime (default 30 days)
:pltimedecr:\ ‖ Decrement pltime
:vltime#10800:\ ‖ The vltime (default 7 days)
:vltimedecr:\ ‖ Decrement vltime
:pinfoflags="la": ‖ On-link/autonomous flags (default)

The meaning of the addr, prefixlen, pltime and vltime parameters should
be obvious. The Boolean pltimedecr and vltimedecr parameters indicate
that the preferred and valid lifetimes should be decremented so they expire
after the time defined in pltime and vltime, respectively. The pinfoflags

parameter contains the on-link (“l”) and autonomous (“a”) flags; these are
set by default.

To add another prefix with another set of parameters, we can append them
to the interface configuration. The parameter names are appended a number,
so for the second prefix we define its address in addr2 instead of addr.

Solaris 10 The prefix configuration looks mostly as expected:

/etc/inet/ndpd.conf

prefix 2001:db8:fedc:abcd::/64 pcn0 \ ‖ The prefix and interface
AdvPreferredLifetime 7200 \ ‖ The preferred lifetime
AdvPreferredExpiration "2011-11-11 11:11" \ ‖ An absolute pltime
AdvValidLifetime 10800 \ ‖ The valid lifetime
AdvValidExpiration "2011-11-22 22:22" \ ‖ An absolute vltime
AdvOnLinkFlag on \ ‖ On-link flag
AdvAutonomousFlag on ‖ Autonomous flag

We can specify the preferred and valid lifetimes as relative to the time that the
advertising daemon sends its advertisement with the AdvPreferredLifetime

and AdvPreferredLifetime parameters. Alternatively we can set absolute

230 16 More on Addresses

lifetimes using AdvPreferredExpiration and AdvValidExpiration as the
example shows. If these absolute deadlines exist, then they take preference
over their relative counterparts. 103

We can test the prefix advertisements with a packet sniffer much like we
checked the correct handling of interface-specific parameters.

� Start the packet sniffer.
� Start the router advertisement daemon.
� Check that the router advertisements show the expected properties.

16.5.4 Expiring a Prefix From a Subnet

The most common reason to meddle with the data that routers advertise is
a network renumbering. We’ll take a closer look at the entire procedure in
chapter 24, right now we just make the router advertisement daemon expire
a prefix from a subnet.

We can’t just remove the prefix from the router; if we did this, then
the router wouldn’t know that the subnet is directly reachable and therefore
couldn’t deliver packets with a destination address from the prefix.

If we just set the preferred and valid lifetimes to zero, then according to
what we’ve seen so far all hosts will mark the prefix as invalid and not use it
anymore even for existing connections. An attacker connected to the subnet
could therefore run a very simple denial of service attack by just sending
router advertisements for the prefixes with zero lifetimes.

To avoid these attacks, RFC 2462 [110, section 5.5.3] demands that a host
will behave like this only if the router advertisement was authenticated with
an IPsec AH header—which isn’t available for multicasts. Otherwise a host
will lower the valid lifetime it stores for the prefix to no less than two hours.

It is however possible to set the preferred lifetime to zero with an appropri-
ate router advertisement. While this might still be used for a less threatening
denial of service attack under certain conditions, quickly deprecating an ad-
dress is desirable when we need to fix a problem on short notice.

So unless we set up an IPsec framework that supports multicast authen-
tication, expiring a prefix from a subnet takes at least two hours, but as long
as we have another preferred prefix available we can quickly switch over to it.
The deprecated prefix won’t be used anymore except for existing connections.

In the previous section we have seen that some of the advertising daemons
don’t implement absolute expiration dates properly. The easiest strategy to
deal with the situation is this:

1. To expire a prefix from the subnet we first set the preferred lifetime in the
advertisement daemon’s configuration to zero and restart the daemon.

16.6 The Router Renumbering Protocol 231

2. We need to figure out for how long we need to keep a deprecated prefix
before we can turn it invalid. This depends on the applications we use as
well as the willingness of our upstream provider to keep the prefix routed
to us. If we aren’t in a rush, keeping the prefix deprecated for a week is
in many cases desirable. We need to keep it for at least two hours, unless
we use IPsec authentication in the subnet.

3. At least two hours before we finally want to invalidate the prefix we set
its valid lifetime to zero and restart the advertising router.

4. When the address is finally expired, we remove it entirely from the router
configuration.

To avoid serious problems if anything goes wrong, three measures have proven
particularly useful:

� An alternate prefix, either the successor of the one we expire, or a
unique-local prefix, should be configured. All nodes must be reachable
through this alternate prefix.

� Every change to the router configuration must be visible in the adver-
tisement packages. To avoid surprises it is extremely helpful to observe
them in a packet sniffer.

� After every step the hosts must show an updated interface configu-
ration. Some advertising routers don’t immediately send an advertise-
ment when they are restarted, so we must wait a while for the daemon
to send an updated advertisement.

16.6 The Router Renumbering Protocol

RFC 2894 [20] defines the router renumbering protocol. Using site-local multi-
casts it provides a means to distribute new prefixes throughout a site without
configuring all routers involved.

In theory, the protocol promises to be a very valuable tool. In prac-
tice, implementations are scarce at best and the idea of a user mistake, bug
or denial-of-service attack using a renumbering message rendering an entire
site’s network out of order deters experienced administrators from using the
protocol.

In the long run it is quite likely that the renumbering protocol will prove
useful. Using an automatism to do some tedious and error-prone task, like
changing prefix configurations in routers, can actually prevent a number of
stupid mistakes. As soon as IPv6 support becomes commonplace enough that
ISPs provide for the needs of end customers without network skills, the proto-
col will quite likely prove extremely useful. But for now router renumbering
is little more than a nice idea that nobody really wants to try except possibly
in a pure test environment.

17

Advanced Routing with Quagga

In chapter 7 we have taken a first look at various essential routing topics. We
have used RIPng to maintain our routing tables with minimal effort. As a
bonus, in a redundant network topology RIPng takes care of failing routes
faster than we can do manually. But RIPng has its drawbacks: It converges
too slowly to make an existing TCP connection survive a router failure, it
only supports a very primitive routing metric and it doesn’t scale too well in
a large environment.

In this chapter we take a look at some of the more advanced features
that a more powerful RIPng implementation and the OSPF routing protocol
offer. While these features come at the price of running a fairly heavyweight
routing protocol framework, there are many situations that simply don’t leave
us another choice.

Running routing protocols like OSPF has long been the domain of ded-
icated hardware routers. Using Unix for this purpose we are pushing it to
the limit. So we restrict ourselves to some scenarios that actually occur with
Unix based routers and skip those that should be left to dedicated routers.

17.1 The Quagga Routing Framework

The most popular routing framework in the Unix world is called Quagga, a
derivative of GNU Zebra. Since it is powerful, complex and in many ways
quite “un-Unix-ish”, we take a look at it in general before we actually try to
use it for some more advanced routing setups.

17.1.1 Features and Peculiarities

Compared to the RIPng daemons for FreeBSD and Solaris, Quagga is huge
and complex. It provides a very flexible framework for dynamic routing,
supporting multiple routing protocols at the same time. It even passes routing
information between different routing protocols.

234 17 Advanced Routing with Quagga

To do so, Quagga consists of a central framework daemon called zebra,
which takes care of statically configured routes and operates as a mediator
between the system’s routing table and the other daemons which implement
the individual routing protocols.

Quagga needs to have full control of the interface and routing configura-
tions. It is generally a bad idea to interfere with it through the system’s own
network configuration boot scripts and related tools. It is up to us to choose
a strategy to configure our network: If we don’t configure the network in
the system’s boot configuration but leave the work entirely to Quagga, then
we may have problems with some unrelated services that are started before
Quagga. Alternatively we can manually keep the boot configuration in sync
with the Quagga configuration to avoid these problems. If we accidentially
let them run out of sync however, then Quagga may be affected.

As a general rule of thumb, Quagga is best run on a dedicated machine
with no other services (short of the usual SSH daemon) and the network
configuration left entirely to Quagga.

Another peculiarity of the Quagga framework is the way that the configu-
ration is handled. In section 7.4 we configured Quagga on Debian by editing
some configuration files. That worked fine for a minimalistic RIPng setup,
but as soon as we want some more advanced configurations this will become
rather troublesome. The canonical way to deal with Quagga configurations
looks quite similar to the way that Cisco administrators handle their routers:
There is a command line interface called the virtual terminal interface (VTY)
for every daemon in the framework that we can connect to using telnet. This
interface lets us manipulate the configuration on the fly without the need to
restart a daemon after we’ve changed the configuration, which is a substantial
advantage if we deal with large routing tables.

But a command line interface also has a number of drawbacks: Its han-
dling is un-Unix-ish and and doesn’t mix too well with established adminis-
tration tools and procedures. It doesn’t support comments. Yes, if we edit
the files that Quagga uses to store its configuration by hand, then we can add
comments. But if we change the configuration through the virtual terminal
interface and save it to the file, then we overwrite all comments. The Quagga
daemons expect the configuration in these files to be arranged in a specific,
but undocumented, order. So writing configurations by hand is often quite
tedious and error-prone, simply because the necessary documentation is miss-
ing. This can be particularly dangerous if we try to generate the configuration
for a number of routers using scripts. Some routing protocols expect that all
routers involved use the same settings for some parameters. If we maintain
these parameters on all routers manually, then we are bound to make occa-
sional mistakes that cause individual routers to fail. If we use a script to
generate the necessary configuration, then a mistake in that script, possibly
due to the missing documentation, may take all routers down.

17.1 The Quagga Routing Framework 235

A final peculiarity is the way how Quagga deals with non-existent inter-
faces. If we try to configure a non-existent interface, Quagga will actually
accept that configuration without a hint that the interface doesn’t exist. This
can be quite unnerving if we just mistyped the interface name, but it has a
huge advantage: We can set up an interface configuration before the interface
actually exists. This frequently happens with tunnels and PPP interfaces.
And if an interface unexpectedly goes down, then Quagga will remove the
“static” routes associated with it and generally behave quite smart about the
missing interface.

17.1.2 Supported Routing Protocols

In section 7.4 we have already used Quagga in a very simple setup to support
RIPng on Debian Sarge. The Quagga RIPng daemon ripngd offers a wide
range of fine-grained controls to adjust its behaviour.

If RIPng doesn’t provide the features we need, Quagga also offers an
OSPFv3 daemon, somewhat misleadingly called ospf6d. OSPFv3 is more
complex to deal with, but also far more powerful than RIPng. It is the most
important reason to use Quagga with IPv6.

RIPng and OSPFv3 are both interior gateway protocols (IGPs): They
only operate in a contiguous set of subnets with well-defined borders called an
autonomous system (AS). Neither RIPng nor OSPFv3 scale too well: RIPng
is limited by its metric to networks with a diameter of 15 hops while OSPFv3
requires every router to keep track of all network links and routers within the
autonomous system.

Between autonomous systems exterior gateway protocols (EGPs) are used.
The de facto standard today is called the border gateway protocol (BGP). Its
multi-protocol extensions provide for IPv6.

Originally, only ISPs with their own autonomous system needed to run
BGP. But when users grew more and more dependent on their Internet con-
nectivity and demanded redundant network uplinks, IPv4 had little to offer
except to assign these users their own autonomous systems and provider-
independent addresses and let them run their own BGP routers. Fortu-
nately, IPv6 offers a simpler way to provide redundant network connectivity—
section 25.1 explains the details.

17.1.3 Installing Quagga

To set up a Quagga-based router we start with a base installation. We don’t
need to configure the network since we’ll take care of this through Quagga later
on. Next we need to install the Quagga software and enable it. Most Unixen
ship with a pre-compiled Quagga package, which is quite helpful because the
source code from http://www.quagga.net/ doesn’t compile out of the box
on some Unixen.

236 17 Advanced Routing with Quagga

Debian Sarge The distribution media include a quagga package containing
version 0.98.3.

FreeBSD 6.1 Quagga version 0.98.3 is available from the ports/packages
collection.

Solaris 10 As of today the Quagga source code doesn’t compile on Solaris 10
and the Zebra binaries included on the installation media have been compiled
without IPv6 support.

Short of debugging the Quagga source code to make it compile on Solaris 10
we have two options: We can search http://www.quagga.net/ for a usable
binary release or we can build Zebra from the SUNWzebraS source package on
the installation media.

Since we can’t rely on the availability of binary packages on the Web, we in-
stall basic development environment from the packages SUNWbzip, SUNWgzip,
SUNWhea, SUNWsrh, SUNWcpp, SUNWsprot, SUNWtoo, SUNWarc, SUNWlibmr,
SUNWlibm, SUNWbtool, SUNWgcmn, SUNWgccruntime and SUNWgcc and the Ze-
bra source code from SUNWzebraS. Then we rebuild Zebra with the commands

cd /usr/sfw/share/src/zebra-*

PATH=/bin:/sbin:/usr/sbin:/usr/xpg4/bin:/usr/ccs/bin:/usr/sfw/bin

export PATH

./configure --prefix=/usr/sfw --sysconfdir=/etc/sfw/zebra \

--localstatedir=/var/run --enable-ipv6 \

--enable-vtysh

make

chmod 755 install-sh

make install

104

Next we need to preconfigure the Quagga daemons so that they start and
open the configuration port. As a first step we need to create the configuration
files zebra.conf, ripngd.conf, ospf6d.conf and such for all daemons that
we want to use. They should all contain a single line

zebra.conf, ripngd.conf, ospf6d.conf, . . .

password xyzzy

that holds the password that admits access to the virtual terminal interface.

Just for the records: Don’t use “xyzzy” as your password.
It is only an example password and you are expected to
choose your own. (As if you didn’t know. . .)

Depending on the particular Unix and compilation, these files go in a
different directory:

Debian Sarge The directory is /etc/quagga.

FreeBSD 6.1 The directory is /usr/local/etc/quagga.

17.1 The Quagga Routing Framework 237

Solaris 10 with Zebra According to the --sysconfdir option we’ve used
with the configure script the directory is /etc/sfw/zebra; the binary dis-
tribution also uses this directory. 105

Now we need to enable forwarding and start Quagga. Again, different
Unixen use different ways to start the daemons:

Debian Sarge A line

/etc/sysctl.conf

net/ipv6/conf/all/forwarding=1

in /etc/sysctl.conf enables forwarding after the next reboot.
The file /etc/quagga/daemons contains the list of all Quagga daemons

we want to use. For now it suffices to change the lines for zebra and ripngd

to

/etc/quagga/daemons

zebra=yes

ripngd=yes

Don’t remove the remaining lines, otherwise the boot script will complain
about them.

Additionally we probably want the virtual terminal interfaces of all dae-
mons to be accessible using the IPv6 loopback interface only. The file
/etc/quagga/debian.conf contains the options that the boot script starts
the daemons with. We should change all occurrences of “-A 127.0.0.1” to
“-A ::1”.

FreeBSD 6.1 In /etc/rc.conf we need the lines

/etc/rc.conf

ipv6_enable=YES

ipv6_gateway_enable=YES

quagga_enable=YES

quagga_daemons="zebra ripngd"

quagga_flags="--daemon -A ::1"

to enable IPv6 in general, turn on forwarding and start the zebra and ripngd

daemons.

Solaris 10 with Zebra First we need a script to start and stop the dae-
mons. We could take the scripts from the binary Zebra package and make
them support the ripngd and ospf6d daemons, but since these scripts only
run a single routing protocol, they are probably not worth the effort. So
instead we write our own script /etc/sfw/zebra/startstop.sh:

238 17 Advanced Routing with Quagga

/etc/sfw/zebra/startstop.sh

#! /bin/sh

case "$1" in

start) shift

for daemon in zebra "$@"

do

/usr/sfw/sbin/$daemon --daemon -A ::1

done

;;

stop) for daemon in bgpd ripngd ospf6d ripd ospfd zebra

do

pkill -x $daemon

done

;;

*) echo "Usage: $0 start|stop <daemons...>"

exit 1

;;

esac

Next we use routeadm to set up the routing services.

chmod 755 /etc/sfw/zebra/startstop.sh

routeadm -s ipv6-routing-daemon=/etc/sfw/zebra/startstop.sh

routeadm -s ipv6-routing-daemon-args="start ripngd"

routeadm -s ipv6-routing-stop-cmd="/etc/sfw/zebra/startstop.sh\

stop"

routeadm -e ipv6-forwarding

routeadm -e ipv6-routing

To make the virtual terminal interface accessible by name we finally add the
lines

/etc/services

zebra 2601/tcp

ripd 2602/tcp

ripngd 2603/tcp

ospfd 2604/tcp

bgpd 2605/tcp

ospf6d 2606/tcp

to /etc/services. 106

To ensure that our boot configuration is correct we should now reboot the
router. We can check that everything works as expected:

� Forwarding must be enabled. On systems with sysctl check it with

sysctl -a | grep forward

and on Solaris 10 use

ndd /dev/ip6 ip6_forwarding

17.1 The Quagga Routing Framework 239

� Use ps to verify that the zebra and ripngd daemons are running.
� Ensure with telnet that the virtual terminal interfaces work:

telnet ::1 zebra

[. . .]
Password: xyzzy

router-1> quit

telnet ::1 ripngd

[. . .]
Password: xyzzy

router-1> quit

� Finally use netstat to check that the virtual terminal interfaces only
listen on the IPv6 loopback interface.

At this point we have a fully functional but yet unconfigured router at hand.

17.1.4 Using the Virtual Terminal Interface

To configure our router we first telnet to the VTY interface of the zebra

daemon:

telnet ::1 zebra

[. . .]
Password: xyzzy

router-1>

This is the unprivileged mode of the VTY. It behaves quite similarly to the
Cisco IOS interface, so if you are familiar with IOS, then the Quagga VTY
will appear quite familiar to you. If you are not, then there are a few things
you will want to know: Any time that you press the ’?’ key you will be shown
a list of all possible commands or parameters you can use. If you have already
typed part of a command, then ’?’ will show all possible completions. If you
hit the tab key instead, the VTY will complete the command if the part you
typed is already unambiguous. But even if you don’t type the tab key the
VTY will recognize and accept the command; the command list shows all
the possible commands currently available. So typing s in is automatically
interpreted as show interface and lists the current interface configuration.
Since we are still in unprivileged mode, there is little harm we can do trying
out all commands except for enable—you may want to take a look around
by yourself. To leave the VTY, use the command quit.

When we enter enable (or en for short) in unprivileged mode, then the
VTY switches to privileged mode (you may also hear the term enable(d)
mode). The command prompt changes from ’>’ to ’#’ and both ’?’ and list

show a larger choice of commands to issue. The first one to try is show

running-config, which displays the current configuration of the zebra dae-
mon.

From privileged mode we can enter configuration mode using the com-
mand configure terminal, which doesn’t configure the terminal settings

240 17 Advanced Routing with Quagga

but reads configuration changes from the terminal. In configuration mode we
can use the hostname command to set the hostname (which should really be
“routername”) used within Zebra:

telnet ::1 zebra

[. . .]
Password: xyzzy

amnesiac> enable

amnesiac# configure terminal

amnesiac(config)# hostname router-1

At this point we have only changed the running configuration that the daemon
currently uses. To make the change permanent we need to copy it to the
startup configuration which is kept in the configuration file zebra.conf:

router-1(config)# write file

Configuration saved to /etc/quagga/zebra.conf

router-1(config)# quit

router-1# quit

If we want to undo the hostname configuration, then we can enter configu-
ration mode mode again and with a command

router-1(config)# no hostname

remove the hostname configuration from the running configuration. The com-
mand prefix no lets us remove most configuration lines from the configuration.

17.1.5 Interface and Static Route Configurations

We still haven’t configured our network interfaces yet. Assume that we have
a Linux router with interfaces eth0 and eth1 and want to assign them the
addresses 2001:db8:fedc:1::1 and 2001:db8:fedc:2::1, respectively. We
first need to enter configuration mode again. From there, we can select each
interface in turn using the interface command, set its configuration and
leave the interface configuration again:

router-1> enable

router-1# configure terminal

router-1(config)# interface eth0

router-1(config-if)# no ipv6 nd suppress-ra

router-1(config-if)# ipv6 address 2001:db8:fedc:1::1/64

router-1(config-if)# quit

router-1(config)# interface eth1

router-1(config-if)# ipv6 address 2001:db8:fedc:2::1/64

router-1(config-if)# quit

router-1(config)# write file

router-1(config)# quit

router-1# quit

We should quickly check that the configuration is correct:

17.1 The Quagga Routing Framework 241

� Using ifconfig -a or ip -6 addr show from the command line verify
that the zebra daemon has set the interface configuration correctly.

Now we may want to add a static route, say to 2001:db8:fedc:3::/64

with the next-hop router at 2001:db8:fedc:2::2. Again we enter configu-
ration mode as before, set the route using the command

router-1(config)# ipv6 route 2001:db8:fedc:3::/64 2001:db8:fedc:2::2

and then save the configuration (which we won’t show in the console tran-
scripts anymore). To check that the route is correctly set, we leave the VTY
and use the operating system’s features to display the routing table.

Solaris 10 with Zebra Different to the other Unixen we need to configure
the interfaces using empty /etc/hostname6.〈interface〉 files because Solaris
needs to plumb the interfaces before Zebra can detect and configure them.

107

17.1.6 Router Advertisements

The zebra daemon also offers router advertisements. We must configure them
for every interface individually, which gives us some fine-grained control but
makes configuration tedious on routers with many interfaces. Additionally,
we need to configure the prefixes to advertise; they are not derived from the
addresses configured to the interface.

To enable router advertisements on interface eth0 on our router from
the previous section, we first go into configuration mode and then enter the
commands

router-1(config)# interface eth0

router-1(config-if)# ipv6 nd prefix 2001:db8:fedc:1::/64

router-1(config-if)# no ipv6 nd suppress-ra

Afterwards we proceed accordingly for interface eth1 and save the confi-
guration. To test the configuration we set up a host in each subnet and verify
that it receives the correct prefix and router information.

Solaris 10 with Zebra The Zebra framework doesn’t support router ad-
vertisements, so we need to use the in.ndpd daemon for them. 108

17.1.7 Debugging Capabilities

Before we engage the first dynamic routing protocol, we finally take a look at
the debugging capabilities of the Quagga framework.

First we need to decide what debug information we are interested in. The
zebra daemon lets us log internal events, the communication between zebra

242 17 Advanced Routing with Quagga

and the kernel, and packets that zebra sends or receives. These categories
are similar to the facility parameter in syslog messages. Additionally, all
messages have a syslog-style priority level; we can choose from what level
on we want to log messages. Finally we need to tell zebra where to send the
debug messages. Similar to Cisco routers we can log everything to the VTY,
but we can also send the messages to a log file—which some Cisco routers
can’t because they don’t have a hard disk.

If we want to log all messages related to the communication with the kernel
at a priority level of “informational” and above to a file /tmp/zebra.log, then
we enter configuration mode and use the commands

router-1(config)# debug zebra kernel

router-1(config)# log file /tmp/zebra.log informational

to set the debugging configuration as we need.
The other Quagga daemons also have similar debugging capabilities that

we can use in the same way.

17.2 RIPng Revisited

In section 17.1.3 we have already enabled the ripngd daemon. Different than
the lightweight RIPng implementations we have already seen with FreeBSD
and Solaris, ripngd needs some basic configuration before it starts to propa-
gate routes.

17.2.1 Enabling RIPng Support with Quagga

To configure the ripngd daemon we need to telnet to its own port, which is
different from the one zebra uses:

telnet ::1 ripngd

The interface looks quite similar to the one we have seen with zebra. Again
we need to enter configuration mode. If we just want to run RIPng on all
interfaces, then we first enable the RIPng routing protocol using the router

ripng command, make it run on all interfaces with the network command
and redistribute all connected subnet prefixes.

router-1(config)# router ripng

router-1(config-router)# network ::/0

router-1(config-router)# redistribute connected

The redistribute command offers us some control of which kind of routes
to distribute. Besides directly connected routes we can choose to include
static routes, routes found in the kernel from elsewhere, or routes received via
OSPFv3 or BGP.

17.2 RIPng Revisited 243

Now we should check that routes propagate as expected. Using the generic
netstat -r command or similar will show us the kernel’s routing table. But
Quagga offers a more useful alternative with the show ipv6 ripng command:

router-1> show ipv6 ripng

Codes: R - RIPng, C - connected, S - Static, O - OSPF, B - BGP

Sub-codes:

(n) - normal, (s) - static, (d) - default, (r) - redistribute,

(i) - interface, (a/S) - aggregated/Suppressed

Network Next Hop Via Metric Tag Time

C(i) 2001:db8:fedc:1::/64

:: self 1 0

C(i) 2001:db8:fedc:2::/64

:: self 1 0

R(n) 2001:db8:fedc:3::/64

fe80::20c:29ff:fed9:3d85 eth1 2 0 02:54

The last entry in this example configuration shows that the ripngd installed
a route to 2001:db8:fedc:3::/64 through fe80::20c:29ff:fed9:3d85 on
interface eth0, which has a RIPng metric of 2 and will expire in 2:54 minutes.

17.2.2 Limited Route Distribution

So far we haven’t achieved anything that the lightweight RIPng daemons we
have used in section 7.4 can’t do. But Quagga offers us a number of features
way beyond the capabilities of the lightweight RIPng daemons.

If we want to use a leaf/backbone topology as in section 7.7.7, then Quagga
starts to become interesting: It lets us restrict dynamic routing to individual
interfaces and network prefixes.

router-1(config)# router ripng

router-1(config-router)# network eth0

router-1(config-router)# network 2001:db8:fedc::/48

router-1(config-router)# redistribute connected

This configuration will support RIPng only on interface eth0 and all other
interfaces that are configured with an address from the 2001:db8:fedc::/48
range. For the leaf/backbone topology we can simply enable RIPng on the
backbone interfaces only.

In some cases we may want a router to receive routing information on an
interface but not to send out its own routing table on that interface. We can
configure such a passive interface similarly to a normal interface:

router-1(config)# router ripng

router-1(config-router)# passive-interface eth1

Passive interfaces are particularly useful if we want to avoid routing traffic

244 17 Advanced Routing with Quagga

through a multi-homed host, a node with multiple interfaces that doesn’t
forward any packets.

Finally, access lists offer control of what routes to propagate. Assume that
we want RIPng to propagate only local routes from the 2001:db8:fedc::/48
prefix and a default route. Then we first set up an access list we call ourfilter
using the commands

router-1(config)# ipv6 access-list ourfilter permit

2001:db8:fedc::/48

router-1(config)# ipv6 access-list ourfilter permit ::/0 exact-match

router-1(config)# ipv6 access-list ourfilter deny ::/0

Access lists follow first-match semantics, so this access list will permit all
prefixes from the 2001:db8:fedc::/48 range and a default route. All other
prefixes will be blocked.

Now we set up the router to use our access list. We can apply it to incoming
or outgoing RIPng responses, to an individual interface or in general. For our
purposes

router-1(config)# router ripng

router-1(config-router)# distribute-list ourfilter in

is perfectly sufficient; it applies the filter to incoming RIPng responses on
all interfaces. If we wanted to filter outbound RIPng responses we’d use out

instead of in and if we wanted to apply the filter only to an individual interface
we’d append the interface names.

17.2.3 Metric Tuning

Towards the end of section 12.3.2 we considered a tunnel scenario that made
it necessary to manipulate the metric associated with an interface. Quagga
offers us several ways to do that.

The redistribute command has an option metric 〈n〉 that sets the met-
ric of all matching routes. For example,

router-1(config)# router ripng

router-1(config-router)# redistribute connected metric 2

router-1(config-router)# redistribute static metric 5

router-1(config-router)# redistribute kernel metric 8

will redistribute all directly connected prefixes with a metric of 2, all static
routes with a metric of 5 and all routes found in the kernel routing table with
a metric of 8.

But in more complex cases, like the tunnel scenario mentioned, this isn’t
enough. What we want here is a way to add some extra “metric penalty” to
individual interfaces and address ranges. The offset-list command offers
us both.

17.2 RIPng Revisited 245

Assume that we want to add an extra metric of 4 on all routes from the
metric range 2001:db8:ffff::/48 we receive on interface eth1. We set up
an access list far-away and then apply the offset-list command to it:

router-1(config)# ipv6 access-list far-away permit

2001:db8:ffff::/48

router-1(config)# ipv6 access-list far-away deny any

router-1(config)# router ripng

router-1(config-router)# offset-list far-away in 5 eth1

If we omit the interface name in the last line, then the offset will be applied to
all packets that match the far-away access list. If we set up an access list that
applies to ::/0, then we can use offset-list based on the interface only.
Finally, it is also possible to apply an offset-list on an outbound interface if
we use the keyword out instead of in.

17.2.4 Route Aggregation

Quagga has an undocumented feature that lets us aggregate multiple routes
within a router. Experiments show that we can configure the router with a
set of aggregatable addresses like this:

router-1(config)# router ripng

router-1(config-router)# aggregate-address 2001:db8:fedc:0::/63

This will tell the router to merge the prefixes 2001:db8:fedc:0::/64 and
2001:db8:fedc:1::/64 to a single prefix 2001:db8:fedc:0::/63. Multiple
aggregate-address commands may be given. With such a configuration, a
router will announce a route to the aggregated prefix with a metric of 1 as
soon as it obtains a route to any of the non-aggregated /64 prefixes.

This feature is useful if we have multiple network clouds that run RIPng
and only connect to each other through a few border routers. If we use route
aggregation on these border routers, then a router in one cloud will only see
an aggregate route to all subnets in the other clouds. This will reduce the
workload on all routers involved. Additionally, it allows each cloud to have
a network diameter of 14 hops and therefore lets us use RIPng even in fairly
large networks.

But route aggregation with RIPng is risky: A RIPng router can’t know
if it has a route to all subnet prefixes within an aggregate prefix. Using
route aggregation may cause a router to announce a route to a subnet that
it doesn’t actually have, and at a metric that may let it shadow an available
route elsewhere. Besides, using an undocumented feature should always be a
last resort only.

17.2.5 Non-standard Timing Parameters

It is possible to change the default timing parameters of the Quagga RIPng
implementation. This violates the standard, either increases the convergence

246 17 Advanced Routing with Quagga

time or the RIPng network traffic and causes instable routing if the parameters
aren’t configured the same on all routers in a subnet. Still, certain exceptional
situations may force us to use this feature.

There are three timing parameters that we can tune: The interval at which
the router sends its route announcements, the time after which a received route
expires and the time after which an expired route is entirely forgotten.

The command timers basic lets us set these parameters. To make RIPng
converge as fast as reasonably possible without regard for the traffic involved,
we can set these parameters using the command

router-1(config)# router ripng

router-1(config-router)# timers basic 1 5 20

to send announcements every second, expire received routes after five seconds
and drop expired routes after twenty seconds.

If we accidentially connect a router with default timer settings to the
same subnet as another router with these custom settings, then both together
may disrupt dynamic routing within the entire network cloud: Whenever
the “default” router sends an unsolicited response, the “fast” router receives
it, realizes that it found a new route, and sends triggered updates to all its
other interfaces. Five seconds later this new route expires, so the “fast” router
sends out another triggered update that marks the route as unreachable again.
When the “default” router sends another unsolicited response, then the same
sequence of events repeats.

So again, meddling with these parameters puts the entire dynamic routing
infrastructure at risk. Don’t to it unless you absolutely have to.

17.3 Open Shortest Path First (OSPF), version 3

Even though the previous sections show that RIPng can be coerced to do a
number of advanced tricks if the implementation supports them, they also
show that we are pushing its limits. If we really need these tricks to make
RIPng do what we want, then we are quite likely trying to use the wrong
tool for the job. The open shortest path first, version 3 (OSPFv3 or OSPF)
routing protocol is more complex to configure and operate than RIPng in a
simple, straightforward environment, but in a complex setup it quickly be-
comes the preferred routing protocol because it offers a number of features we
may need.

OSPFv3, as specified in RFC 2740 [16], is a straightforward port of
OSPFv2, an IPv4-only routing protocol specified in RFC 2328 [89].

17.3.1 Features and Limitations

OSPF has some major advantages over RIPng: It recovers from network
failures within a few seconds rather than several minutes, offers a powerful

17.3 Open Shortest Path First (OSPF), version 3 247

metric, supports networks with large diameters and lets us aggregate subnet
prefixes into larger routing prefixes.

It also has a number of disadvantages: OSPF is a very complex protocol
and is therefore more susceptible to faulty implementations. Different than
RIPng it needs some configuration before it can actually run on a router. And
even though it does support networks with large diameters, it doesn’t scale
too well simply because it needs far more resources than RIPng.

The Quagga implementation of OSPF for IPv6 has at least two more
drawbacks: According to its documentation, at least up to version 0.98.3
there is no support for prefix aggregation through so-called “areas” and a
router can’t run multiple instances of OSPF at the same time.

Solaris 10 with Zebra Apparently the ospf6d daemon doesn’t work—it
fails to establish an adjacency with its peers. So for the rest of this chapter
we ignore this implementation. 109

17.3.2 Basic Concepts

OSPF is an interior routing protocol like RIPng, so it runs within a well-
defined contiguous network cloud; the OSPF specifications frequently assume
that we run a single OSPF instance throughout an entire autonomous system.
All OSPF routers within this network cloud keep track of the entire network
topology and the link state of all routers within the cloud. In OSPF terminol-
ogy, a link is not a subnet as in IPv6 terminology, but a connection between
two routers or a router and an attached subnet. As soon as a router learns
that a link has changed, it can then quickly recompute its routing table.

Link state changes are quickly announced through the entire cloud by
flooding : A router that learns about a link state change will immediately
send a link state advertisement (LSA) to all other routers that it is directly
connected to except for the one that it received the change from. To avoid a
network storm, routers that receive a change that they already know about
will ignore that change.

These two properties make OSPF so powerful: An OSPF router always has
very up-to-date information about the state of the entire network and uses this
information to set up a matching routing table. RIPng on the other hand takes
three minutes to decide that a neighboring router has become unreachable and
then only propagates this information at an average 3 seconds per hop.

17.3.3 Essential Configuration

The OSPFv3 daemon within the Quagga framework is named ospf6d. To
enable it we first create a configuration file ospf6d.conf in the Quagga con-
figuration directory that holds the usual password line:

248 17 Advanced Routing with Quagga

ospf6d.conf

password xyzzy

(Again, replace “xyzzy” with your own password.) As with ripngd we need
this line so we can access the ospf6d daemon through the VTY interface. Next
we start the daemon. Again we follow the same procedure as with ripngd:

Debian Sarge In /etc/quagga/daemons we must change the line related
to ospf6d. Additionally we turn off RIPng support at least for now:

/etc/quagga/daemons

zebra=yes

ripngd=no

ospf6d=yes

[. . .]

Again, the boot script will complain if we remove any daemon from this list
completely, so we must only change these three lines.

FreeBSD 6.1 To enable the ospf6d and disable ripngd again, we set the
variable quagga_daemons in /etc/rc.conf accordingly:

/etc/rc.conf

quagga_daemons="zebra ospf6d"

110

Now we either reboot and make sure that our router starts up properly,
or restart the Quagga daemons manually. Afterwards we configure the zebra

daemon as before, assigning addresses to interfaces and enabling router ad-
vertisements if necessary.

Within an OSPF cloud every router must be assigned a unique router ID
to identify it. This router ID is a 32 bit integer that “happens to be written
in dotted-quad notation like an IPv4 address”. For obvious reasons IPv4
network administrators routinely assign a router one of its IPv4 addresses
as the router ID. Unfortunately OSPFv3 still uses the same format for the
router ID, so we can’t just use the interface ID of an interface as the router
ID. Instead, we must assign the router ID manually.

Additionally we need to assign all interfaces to an area, which is a sub-cloud
within our OSPF cloud. Areas are identified by another 32 bit integer that
again “happens to be written in dotted-quad notation like an IPv4 address”.
We’ll take a closer look at OSPF areas in section 17.3.9. For now we assign
all interfaces to the so-called backbone area with the special area ID 0.0.0.0.

To configure a router we telnet to its ospf6d port and use the VTY inter-
face of the ospf6d:

17.3 Open Shortest Path First (OSPF), version 3 249

telnet ::1 ospf6d

[. . .]
Password: xyzzy

router-1> enable

router-1# configure terminal

router-1(config)# router ospf6

router-1(config-ospf6)# router-id 255.0.0.1

router-1(config-ospf6)# interface eth0 area 0.0.0.0

router-1(config-ospf6)# interface eth1 area 0.0.0.0

router-1(config-ospf6)# interface eth2 area 0.0.0.0

At this point our OSPF router is ready to run.

17.3.4 A Simple Test Setup

Now that we have seen how to configure an OSPF router it is time to set up
a test environment that lets us experiment with OSPF. The examples in the
next few sections refer to the environment shown in figure 17.1. It models

Spare Backbone, 2001:db8:fedc:ffff::/64

Backbone, 2001:db8:fedc:fffe::/64 Backbone, 2001:db8:fedc:fffd::/64

2001:db8:fedc:1::/64 2001:db8:fedc:2::/64

Router 1
1.1.1.1

Router 2
2.2.2.2

Router 3
3.3.3.3

Left
Host

Right
Host

Fig. 17.1. A simple OSPF test setup

a small part of a standard two-tiered network topology with a redundant
backbone at the top and two leaf networks towards the bottom. The backbone
consists of a single “spare backbone” subnet and a “main backbone” with two
subnets and router 2 connecting these subnets. To each leaf subnet connects
a host. The routers connected to the leaf subnets provide them with router
advertisements.

Note that the backbone subnets don’t need any subnet prefixes assigned
to them. Routers only communicate using multicasts and their link-local

250 17 Advanced Routing with Quagga

addresses, so it isn’t strictly necessary to assign any subnet prefixes here.
Without them, reaching router 2 from one of the hosts is impossible, however.
This can be considered a security feature, but it can also be a serious problem
if the router needs remote attendance.

Debian Sarge We need to assign an address to every router interface, even
those connected to the backbone, otherwise the router won’t set up a connec-
tion to its peers. 111

We should now do a few rudimentary checks to make sure that our test
setup works as expected:

� All routers must run zebra and ospf6d processes.
� Check with ifconfig or ip that all routers have the correct interface

configuration.
� Check that router advertisements work correctly: Both hosts must

show a routable address on their interface.
� On all routers check the routing tables with netstat -r or ip -6

route show: They must show a route for every subnet in the environ-
ment.

� The two hosts must be able to ping each other.

17.3.5 Understanding OSPF Status Information

The ospf6d daemon offers a huge variety of status information that we can use
to debug routing problems. Taking a look at them also helps us to understand
how OSPF works.

First we take a look at an individual router’s view of the OSPF cloud. On
router 3, which happens to run FreeBSD, we list its immediate neighbors:

router3# show ipv6 ospf6 neighbor

Neighbor ID Pri DeadTime State/IfState Duration I/F[State]

1.1.1.1 1 00:00:37 Full/BDR 00:04:08 lnc0[DR]

2.2.2.2 1 00:00:32 Full/DR 00:03:34 lnc1[BDR]

The first column shows the router ID of the neighbor listed. The third column
“DeadTime” shows for how much longer our router assumes its neighbor to
be reachable. By default, OSPF routers “ping” each other every ten seconds
and assume their peer dead if they don’t receive such a “ping” within forty
seconds. These timings are freely adjustable, so we’ll take a closer look at
them in section 17.3.6. The “State/IfState” column in the example states
that the connection to the other routers is fully established.

The “BDR” and “DR” strings indicate the role of the neighbor on the
particular subnet. A designated router (DR) for a subnet is “assuming re-
sponsibility” for that subnet: It assigns the subnet a “name”, consisting of the
designated router’s router ID and a index number called link state ID which

17.3 Open Shortest Path First (OSPF), version 3 251

uniquely identifies the attached interface on the designated router. The des-
ignated router is also responsible for announcing the existence of the subnet
to the OSPF cloud. The backup designated router (BDR) assumes the role
of designated router if the original designated router fails. All routers that
are neither designated router nor backup designated router are usually called
DR-other in status displays. The second column, labeled “Pri” for priority,
shows the priority of the neighbor to become designated router. It is an 8 bit
unsigned integer and defaults to 1. The higher the number, the more eligible
is the neighbor to become designated router.

The “Duration” column in the neighbor display shows for how long the
neighbor has been “talking” to our router. In OSPF terminology, it shows for
how long an adjacency has been established, or for how long they have been
exchanging OSPF routing information.

Finally, the “I/F[State]” shows from which interface our router reaches the
neighbor and what our own role as a designated router is.

Next we ask our router about its view of the OSPF cloud. More precisely,
we ask it to show us the shortest paths to all other routers. Every router
computes these shortest paths in a shortest path first tree (SPF tree).

router3# show ipv6 ospf6 spf tree

+-3.3.3.3 [0]

+-2.2.2.2 Net-ID: 0.0.0.2 [1]

| +-2.2.2.2 [1]

+-3.3.3.3 Net-ID: 0.0.0.1 [1]

+-1.1.1.1 [1]

+-1.1.1.1 Net-ID: 0.0.0.3 [2]

The first line of output shows our router as the root of the SPF tree. It has the
router ID 3.3.3.3 and is directly reachable from itself. The second line shows
that we are connected to a subnet that has router 2.2.2.2 as its designated
router and 0.0.0.2 as its link state ID—this is the right main backbone
subnet. Through this subnet we can reach router 2, identified by its router
ID of 2.2.2.2, as the third line shows. The fourth line shows we are also
connected to another subnet that we are the designated router of and which
we assigned the link state ID 0.0.0.1; this is the spare backbone. Through
the spare backbone we can reach router 1.1.1.1 and through it we can reach
another subnet—the left leaf subnet with the 2001:db8:fedc:1::/64 prefix.
The numbers in brackets are the distance between our router and the element
of the SPF tree measured in the OSPF cost metric that we’ll investigate in
section 17.3.8.

What’s surprising is that the subnet lines don’t show the associated address
prefixes, too. This would be quite helpful, but OSPF simply doesn’t work
that way: Our router knows that router 1 can deliver packets to the prefix
2001:db8:fedc:1::/64, but it doesn’t know through which interface router 1
can do so. This distinction makes OSPF immune to problems caused by

252 17 Advanced Routing with Quagga

inconsistent router prefix configurations on the routers; the problems we have
analyzed for RIPng in section 7.7.6 are simply non-existent with OSPF.

Additionally, there is no entry for the leaf subnet below our router 3.
Directly connected subnets simply don’t show up.

So how does our router generate the routing table from the SPF tree?
First it needs to know about all prefixes available in the area. In a moment
we’ll see how our router finds out about them. For now we just assume that
somehow it knows of all other routers and which prefixes they have a direct
connection to. From this our router generates a list of all prefixes and the
routers attached to each. For every prefix it can then look up the attached
routers in the SPF tree and choose the closest one. Also from the SPF tree
it deduces the shortest path to that router. Knowing that, it adds a routing
table entry to the prefix with the next router being the first hop on the path
to the router connecting to the prefix. We can take a look at the result:

router3# show ipv6 ospf6 route

*N IA 2001:db8:fedc:1::/64 fe80::20c:29ff:fe63:a804 lnc0 00:08:48

*N IA 2001:db8:fedc:2::/64 ::1 0 02:18:23

*N IA 2001:db8:fedc:fffd::/64 :: lnc1 02:18:18

*N IA 2001:db8:fedc:fffe::/64 fe80::20c:29ff:fe63:a804 lnc0 00:46:50

fe80::20c:29ff:fef1:c04b lnc1

*N IA 2001:db8:fedc:ffff::/64 :: lnc0 00:46:50

The first column here marks all active routes with *N. Next follows the ab-
breviation IA, which stands for intra-area route; these routes are within the
area that the interface connects to. Then follow the routed prefix and the
address of the next-hop router. There is a minor surprise here: The sec-
ond line shows ::1 as the next-hop router to the directly attached subnet
2001:db8:fedc:2::/64 but the third and last line show :: as the next-hop
router to the two backbone subnets that we attach to. The difference between
them is that the bottom subnet is only reachable through our router 3, so it
appears differently in the routing table. Following the next-hop router we find
the interface that connects us to the next-hop router and how long the route
has been active.

Still we want to learn about the prefixes within an area. The command
show ipv6 ospf6 database intra-prefix detail presents us a list of all
known prefixes within an area. Beyond that, a wide range of show ipv6

ospf6 ... commands provide us with information about the OSPF cloud in
an almost arbitrary level of detail.

17.3.6 Timing Considerations

Next we should take a look at the way OSPF works, why it handles network
failures so much faster than RIPng and how we can improve its responsiveness
in various cases.

17.3 Open Shortest Path First (OSPF), version 3 253

When an OSPF router attaches to a subnet, it sends a hello packet to
that subnet. This packet will be received by all other OSPF routers on that
subnet. They will send the router a number of packets containing various
link state advertisements (LSAs) that contain all the information it needs to
know about the subnet, the routers connected and the OSPF cloud in general.
There is no way to speed up this event. In fact, it does take some time to
complete.

Similarly, when the network changes, the routers that detect the change
will send new link state advertisements to their peers. These LSAs only con-
tain information about the change that occurred. The neighbors will forward
these LSAs to their peers, eventually flooding them to all routers that need to
know about the change. Again, there are no tunable parameters that control
the speed of the flooding. But flooding is a mechanism that runs as fast as
the LSAs can be flooded through the network, so the only ways to speed it
up are faster networks or a network topology that reduces the maximum time
that a packet needs to travel from one “end” of the network to the other.

When a router receives an LSA, it has to recompute its routing table.
Again it does this at the greatest possible speed, so there are no tunable
parameters. If we need to speed the recomputation up, then we need to
minimize the routing table. Using few large subnets is obviously a dubious
strategy. Aggregating multiple routes is more feasible; section 17.3.9 explains
how we can use multiple OSPF areas to do so.

But still, there are two configurable parameters that control the perfor-
mance of OSPF in a certain situation: OSPF will only send out those LSAs
when it detects a change in the network topology—most notably the failure
of a link. In some cases the operating system will notify the OSPF daemon
as soon as a link becomes unavailable, so the LSAs are sent out immediately.
But in other cases, like a router connected to another through an Ethernet
subnet, neither the operating system nor the OSPF daemon notice right away
if a peer suddenly dies. In this particular case the “ping” packets we’ve men-
tioned before become crucially important. They are just hello packets again
and are by default sent every 10 seconds by every router. If a router hasn’t
received a hello packet from a peer for a configurable time, by default 40 sec-
onds, then the router assumes its peer to be unreachable. While 40 seconds
is far better than the 180 seconds timeout that RIPng uses, it is still long
enough to make impatient users call us up. So we may want to sacrifice a
bit of bandwidth and send hello packets more often so that we can detect a
failing link faster.

The two parameters are called hello interval and router dead interval. Ac-
cording to RFC 2328 [89, section 10.5] these two parameters are embedded
in the hello packets; a router receiving a hello packet with parameters differ-
ent than its own will discard the packet. So it is mandatory to keep these
parameters the same on all router interfaces connected to the same subnet.

Configuring the parameters is quite straightforward: We just set them on
a per-interface basis using the commands

254 17 Advanced Routing with Quagga

router3(config)# interface lnc0

router3(config-if)# ipv6 ospf6 hello-interval 1

router3(config-if)# ipv6 ospf6 dead-interval 4

to minimize the time that a dead route stays undetected. Using an even
shorter dead interval setting increases the risk that dropped or broken hello
packets will cause sporadic route updates.

The performance impact of such a configuration is often acceptable. OSPF
won’t send any LSA updates unless the network has changed, so we only need
to worry about the extra network traffic caused by the hello packets. Only
if we use low-bandwidth WAN connections should we be careful about these
settings. But these are usually point-to-point links that use some sort of
carrier signal or similar, so a failure will be detected by the operating system
and more frequent hello packets are unnecessary anyway. So throughout the
rest of this chapter we’ll assume a hello interval of 1 second and a dead interval
of 4 seconds on all interfaces.

RIPng enthusiasts might refer to section 17.2.5 and point out that it is
possible to manipulate similar parameters with RIPng, too. That is correct
at least with Quagga, but doing so violates the RIPng standard and tends to
cause problems because inconsistent configurations are not detected by the
protocol. In contrast, the OSPF design explicitly supports timing parameter
tuning.

17.3.7 Failover Tests

Next we can use our test environment to gather some experience with the way
OSPF behaves when a network failure occurs.

There are several ways to observe the ospf6d daemon at work. From the
outside we can use ping and traceroute between the hosts to see how the
hop count or the route of a packet itself change. We can also use the various
debugging features of ospf6d to show us what’s happening; unfortunately, log
files tend to get quite cluttered with arbitrarily detailed information. We can
watch the routing table change from the perspective of the operating system.
Finally we can use a packet sniffer to watch the OSPF protocol at work—if
we are willing to learn about the OSPF protocol internals.

We also have two fundamentally different ways to cause a network failure:
We can shut down individual interfaces through the zebra daemon and the
shutdown interface command, or we can just start to unplug individual cables
or entire switches or routers. Shutting down an interface cleanly will cause an
immediate routing update while the less graceful failures show how the dead
router discovery mechanism works.

I personally like to use ping during these tests; its output shows how
many packets were lost during a failover, the hop count indicates if the route
is optimal at least in simple cases, and if the sender receives any network errors

17.3 Open Shortest Path First (OSPF), version 3 255

during the transition period I can also see them. If I also run traceroute

before and after the failover, then I can compare any changes in routing.

If you have a chance to do so, then this is an excellent moment to set up
a test environment, break things and watch how OSPF deals with network
failures. Take a look at the debugging facilities and make yourself comfortable
with them.

17.3.8 The Cost Metric

Our test environment still has a problem: Traffic between router 1 and router 3
is routed through the “spare backbone” instead of the segmented “main back-
bone”. If the “spare backbone” happens to be an unmanaged 100BaseTX
switch while the “main backbone” is a managed 1000BaseFX switch with a
routing engine that implements our router 2, then we may actually want to
route the traffic through router 2 rather than down the direct “spare back-
bone” link. So we need to adjust the OSPF routing metric to these assumed
properties of our network topology.

OSPF supports the notion of a cost associated with every router interface.
The cost is a dimensionless 16 bit integer. Whenever a path is computed from
one router to another, the sum of all costs assigned to the outgoing router
interfaces on that path is minimized.

By convention, the ospf6d uses 100 Mbit/s divided by the bandwidth
of the link as the cost. Ten years ago, when 100 Mbit/s was about as fast
as any commercially available link was, that convention was quite useful: A
10 Mbit/s link had a cost of 10 while a 100 Mbit/s link had a cost of 1. Today
this convention is useless: A 1 Gbit/s link would have a cost of 0.1, which we
can’t reasonably represent as an integer.

In many cases it is appropriate to pick the maximum bandwidth of all
links in our network cloud and define it as a cost of 1. Dividing the maximum
bandwidth by the bandwidth of any other link will yield that link’s cost.

Consider our example network. If our two main backbone segments were
Gigabit Ethernets while our spare backbone and the leaf subnets only ran at
100 Mbit/s, then we would assign the main backbone subnets a cost of 1 and
the other subnets a cost of 10.

On our preferred router 3 we configure the cost of every interface. If lnc0
is the interface to the spare backbone, lnc1 connects to the main backbone
segment and lnc2 attaches to the bottom leaf subnet, then we configure them
like this:

router3(config)# interface lnc0

router3(config-if)# ipv6 ospf6 cost 10

router3(config-if)# exit

[Continued on next page]

256 17 Advanced Routing with Quagga

[Continued from previous page]
router3(config)# interface lnc1

router3(config-if)# ipv6 ospf6 cost 1

router3(config-if)# exit

router3(config)# interface lnc2

router3(config-if)# ipv6 ospf6 cost 10

router3(config-if)# exit

Similarly we configure router 1. On router 2 we should check the cost settings,
but they should already be set to 1. Now we can test if the routing avoids
the slow spare backbone:

� A traceroute from one host to the other should show four hops, the
three routers and the receiving host.

� A look at the routing tables of all routers should show that they route
all traffic through the main backbone segments.

The OSPF cost metric is well suited to point-to-point links with different
bandwidths in either direction, like ADSL—we just need to assign different
costs to the connecting interfaces.

Another feature that OSPF supports is equal-cost multipath routing : If
two routes at the same cost exist, then OSPF will distribute traffic between
the two. Quagga supports this feature if the underlying operating system can
handle multiple routes to the same destination.

The OSPF metric does however have a limitation: It is inherently latency-
oriented. The costs on a route accumulate and OSPF minimizes the total
cost along a path. That is perfectly reasonable if we want to optimize latency,
because latency also accumulates. But if we are more interested in high band-
width, then the cost metric is inadequate: For maximum bandwidth we choose
a path that consists of high bandwidth links only, no matter how many hops
that path has. If we need bandwidth rather than latency, for example for a
network connecting the servers in a data center to the backup tape library,
then the OSPF cost metric is a problem rather than a solution.

17.3.9 Scalability, OSPF Areas and Route Aggregation

Another major problem with OSPF is the fact that it doesn’t scale. When a
network grows, the SPF tree on every router grows. The database storing all
the LSAs on each router grows, too. The number of LSA updates will grow
because there are more routers, links and prefixes that need to be announced.
Eventually, the OSPF daemon will require noticeable CPU and memory re-
sources to do its job. Finally, the routing table also grows, increasing the
delay of every single packet even if the network doesn’t change at all.

In section 17.2.4 we coerced RIPng to use aggregated routes in a somewhat
haphazard way to work around this problem. OSPF offers a different strategy:
It lets us divide our entire OSPF cloud into multiple OSPF areas.

17.3 Open Shortest Path First (OSPF), version 3 257

Areas are contiguous sub-clouds within an OSPF cloud. Every area is
assigned an area ID, again a 32 bit integer “written like an IPv4 address”.
The special area ID 0.0.0.0 that we have used in our configurations so far is
reserved for the backbone area. All non-backbone areas attach directly to the
backbone area. Every subnet and every router interface belong to exactly one
area. Routers with interfaces in different areas are called area border routers
(ABRs).

According to the documentation of Quagga 0.98.3, support for OSPF
areas is still missing in the ospf6d daemon. While the following
experiments show that this isn’t quite true, support for areas is still

?
definitely incomplete. Don’t use it in production environments.

Now assume that we want to split our test environment into multiple areas.
We could turn routers 1 and 3 into area border routers and replace the bottom
leaf subnets with something more complex, say two subnets and a router each.
The result would be something like figure 17.2.

Area 0.0.0.0 (backbone area)

Area
0.0.0.1

Area
0.0.0.2

2001:db8:fedc:ffff::/64

2001:db8:fedc:fffe::/64 2001:db8:fedc:fffd::/64

2001:db8:fedc:101::/64 2001:db8:fedc:201::/64

2001:db8:fedc:102::/64 2001:db8:fedc:202::/64

ABR
Router 1
1.1.1.1

Router 2
2.2.2.2

ABR
Router 3
3.3.3.3

Router 4
4.4.4.4

Router 5
5.5.5.5

Host 1 Host 2

Fig. 17.2. A multi-area OSPF cloud

258 17 Advanced Routing with Quagga

So what do we have to do? First we add the extra routers and subnets
according to figure 17.2. We also need to change the prefixes within the
subnets in areas 0.0.0.1 and 0.0.0.2—otherwise we can’t aggregate the
prefixes in the areas to a single shorter prefix. At this point we should check
that our configuration—without multiple areas—works as expected by pinging
one host from the other.

Now we configure all router interfaces within our non-backbone areas with
the same area ID. On router 1, which happens to run Debian Sarge and
connects to the 2001:db8:fedc:101::/64 network with interface eth2, we
change the area associated with the interface using the commands

router1(config)# router ospf6

router1(config-ospf6)# no interface eth2 area 0.0.0.0

router1(config-ospf6)# interface eth2 area 0.0.0.1

router1(config-ospf6)# exit

Similarly we need to change the settings for all interfaces on router 4. Now
the non-backbone area 0.0.0.1 should be up and running. First we test that
our network is still functional:

� The hosts must still be able to ping each other.

Now we take a look at router 2. We start with a look at its SPF tree:

router2\# show ipv6 ospf6 spf tree

+-2.2.2.2 [0]

+-2.2.2.2 Net-ID: 0.0.0.1 [1]

| +-1.1.1.1 [1]

+-2.2.2.2 Net-ID: 0.0.0.2 [1]

+-3.3.3.3 [1]

+-3.3.3.3 Net-ID: 0.0.0.1 [11]

+-3.3.3.3 Net-ID: 0.0.0.3 [11]

+-5.5.5.5 [11]

Unsurprisingly, there is no entry for router 4: It belongs to another area, so
it doesn’t show up in the SPF tree. Then how does router 2 get a route to
the subnets in area 0.0.0.1? We take a look at the routing table.

router2# show ipv6 ospf6 route

*N IE 2001:db8:fedc:101::/64 fe80::20c:29ff:fe41:d647 lnc0 00:49:37

*N IE 2001:db8:fedc:102::/64 fe80::20c:29ff:fe41:d647 lnc0 00:49:37

*N IA 2001:db8:fedc:201::/64 fe80::20c:29ff:fe83:a8e5 lnc1 01:07:26

[. . .]

So what has changed? There are still two separate routes for the prefixes,
so we obviously haven’t achieved any route aggregation yet. But the second
column looks slightly different than before: Instead of IA for an intra-area
route we see the routes marked as IE, for inter-area route. So far, everything
seems to work fine. Now we should set up the second non-backbone area,
0.0.0.2, accordingly.

17.3 Open Shortest Path First (OSPF), version 3 259

Setting up multiple areas has reduced the size of the SPF tree in the
routers. But still, the size of the routing table hasn’t changed because there
was no route aggregation. Unfortunately, route aggregation support is still
missing in the ospf6d daemon. The configuration syntax seems to be there,
because analogously to OSPFv2 we can issue the command

router3(config)# router ospf6

router3(config-ospf6)# area 0.0.0.2 range 2001:db8:fedc:200::/56

which should make our area border router 3 announce an aggregated route
to the 2001:db8:fedc:2::/56 prefix. But the necessary functionality is still
missing; the command doesn’t show any effect.

17.3.10 Other OSPF Features and Further Reading

OSPF has a number of additional features to offer. Most of them relate
to areas, which Quagga doesn’t fully support yet: stub areas, not so stubby
areas (NSSAs), virtual links and different metric types for aggregated routes.
Another key feature that is currently missing from Quagga is support for
multiple OSPF instances on a single router; this feature is necessary to set
up gateways between separate OSPF clouds without running BGP between
them.

For more information on the internals of the OSPF protocol, Silvia Hagen’s
books [53, 54] offer quite useful introductions. Beyond that, the official stan-
dards are RFC 2328 [89] for OSPFv2 and RFC 2740 [16] for the IPv6-related
changes from OSPFv2 to OSPFv3.

Finally, the Texinfo documentation for the Quagga framework explains
some more configuration issues; it is available with the source code.

17.3.11 Operational Issues

As we have seen, setting up an OSPF cloud is reasonably straightforward
as long as we know what we are doing and the network topology isn’t too
distorted. But still, there are some pitfalls to avoid.

OSPF is a resource hog, and it doesn’t scale. So we should keep a close
eye on the CPU and memory usage on our OSPF routers, preferably through
a centralized monitoring facility. If the load gets considerable, then it is time
to either replace the router hardware or split off some additional areas (as
soon as Quagga supports them).

OSPF only transmits changes in network topology. If a change gets lost,
then OSPF may not converge towards a reasonable configuration. RIPng is
more forgiving in this respect.

There is one misconfiguration that OSPF really can’t handle: multiple
routers with the same router ID. My personal recommendation is to assign
a new router ID to every router right after purchase and never change that
router ID.

260 17 Advanced Routing with Quagga

Within an area OSPF can’t aggregate prefixes. So assigning network pre-
fixes doesn’t need any particular forethought. But it helps to assign short
prefixes to all areas, so aggregation between areas works well. As a general
rule of thumb I suggest splitting the subnet ID into two 8-bit parts and as-
signing the first 8 bits to the area.

When an area gets too large, first choose the prefix for the new area, then
do a renumbering of the subnets that are to move, and then move the prefixes
to that new area. Remember, renumbering isn’t too much of an issue with
IPv6.

Finally, like RIPng OSPFv3 doesn’t have any authentication because it
is supposed to rely on IPsec. But since it also uses multicasts, which IPsec
implementations don’t support, OSPFv3 should only be run in subnets that
we consider trustworthy; the two-tiered network topology in section 7.7.7 is
as useful for OSPF as it is for RIP.

17.4 Beyond RIP and OSPF

While RIPng and OSPFv3 are the most important IPv6 routing protocols
with respect to Unix, there are some other protocols that also deserve to be
mentioned. As a border case, Quagga also supports BGP-4 and its IPv6 ex-
tensions. Additionally, Quagga has a number of interesting features unrelated
to IPv6. This section provides a quick overview.

17.4.1 The Border Gateway Protocol (BGP)

The most important IPv6 routing protocol besides RIPng and OSPFv3 is
the border gateway protocol, version 4 (BGP-4, or BGP for short). It is the
exterior gateway protocol commonly used between autonomous systems.

BGP was originally devised as an exterior routing protocol for IPv4 in
RFC 1771 [96], but its multiprotocol extensions as of RFC 2858 [7] support a
wide range of other protocols. RFC 2545 [86] defines in detail how to make
BGP carry IPv6 routing information.

BGP only runs between peers, called BGP speakers, across TCP connec-
tions. The network clouds that it connects, the autonomous systems, are
identified by a uniquely assigned 16 bit integer autonomous system number
(ASN). Within each autonomous system an interior routing protocol ensures
that all routers within the autonomous system can reach each other. BGP
treats an autonomous system much like RIP or OSPF treat a single router:
It just detects the connections between autonomous systems and computes
an “exterior routing table” called a routing information base (RIB) between
these autonomous systems. From this routing information base it sets up
the actual routes between BGP routers in different autonomous systems and
passes routing data to the interior gateway protocol to disseminate within its
autonomous system.

17.4 Beyond RIP and OSPF 261

The BGP protocol is fairly simple, at least compared to OSPF. It uses a
distance vector protocol like RIP, so it scales better than OSPF. It doesn’t
periodically send the entire routing information base across a connection but
instead it transmits only changes. BGP detects and avoids routing loops; this
allows for fast propagation of routing changes.

BGP supports a number of different policies that offer fine-grained control
of the routing decisions it makes. These policies, together with the sheer size of
the routing tables in the default free zone, the part of the Internet that doesn’t
have a default route, and the possible implications of a misconfiguration, make
BGP administration so critical.

Even though Quagga implements BGP and its IPv6 extensions, using it
for BGP is fairly uncommon. In general, BGP is best left to dedicated router
equipment.

17.4.2 Other Routing Protocols

Two other interior routing protocols that support IPv6 are IS-IS and EIGRP.
They are of little relevance in a Unix context, but still deserve a short intro-
duction.

The intermediate system to intermediate system intra-domain routing ex-
change protocol (IS-IS) is an OSI routing protocol that provides interior rout-
ing services for both the TCP/IP and ISO/OSI stack. Quagga has a very early
but yet undocumented implementation. Work is still in progress to add IPv6
support to the protocol.

The enhanced interior gateway protocol (EIGRP) is an interior routing
protocol developed by Cisco Systems. They recently released IPv6 support
with EIGRP. Unix implementations are not available.

17.4.3 IPv6-independent Quagga Features

Throughout this chapter we have focused on the IPv6-related features of the
Quagga framework. We have ignored some general features that are not di-
rectly related to IPv6, but are often quite useful.

When we set the password for the VTY interface, we used the most
straightforward approach. Quagga supports a number of more advanced fea-
tures, from assigning a separate password for the privileged mode to storing
passwords in an encrypted manner.

The vtysh tool provides access to all daemons through a single interface.
It can be configured in such a way that it grants users access to the system
based on their user ID, making the password verification obsolete. Addi-
tionally, vtysh is useful in shell scripts that dynamically update a router’s
configuration.

If a routing daemon dies unexpectedly, then a wide range of problems can
occur. If the situation is really bad, then we can’t reach the router remotely

262 17 Advanced Routing with Quagga

anymore and need to get physical access to fix the problem. To deal with this
situation, the watchquagga tool serves as a watchdog process that restarts
Quagga daemons that have died.

17.5 Packet Filter Considerations

Introducing routing protocols besides RIPng doesn’t change the basic packet
filtering issues from section 7.10. But some details are worth a closer look.

The OSPF multicast group IDs are ff02::5 for all OSPF routers and
ff02::6 for the designated router and backup designated router. OSPF
doesn’t use UDP, or TCP, as its transport layer protocol. Instead, OSPF
is its own transport layer protocol, using protocol number 89. We can use the
same packet filter configuration syntax as for encapsulating tunnels to filter
by protocol number or name, so section 12.6.3 applies to OSPF filtering as
well.

BGP filtering is simpler: It uses TCP on port 179, so filtering BGP con-
nections is quite straightforward. Keep in mind that BGP expects all BGP
routers within an autonomous system to be fully meshed; this affects the
packet filter configuration as much as the bgpd configuration.

18

Multicasts Beyond the Link-local Scope

Even though we have used multicast packets for a wide number of purposes
by now, we have mostly ignored them. The occasional “multicast listener”
packets we may have seen in our packet sniffer were annoying rather than
interesting since, at least within a single subnet, multicasts just work without
any problems. But still, the way multicasts work is quite interesting and, as
soon as we start to route multicast packets, surprisingly complex. So in this
chapter we take a closer look at them.

We start with a few tools that help us to deal with multicast problems and
then look inside the “multicast listener” packets. Once we have the tools and
knowledge we need, we tackle the two major approaches to multicast routing
and learn about some problems that make multicast routing quite challenging.
This leads us to a multicast extension that makes multicast routing scale even
to Internet dimensions. Finally, we analyze the operational issues that may
arise with the use of large-scale multicast routing and take a look at the
necessary packet filter configurations.

18.1 A Closer Look at Multicasts

In this section we gather a toolkit to analyze, understand and debug multi-
casts. We start with a few new terms used with multicasts, then investigate
some helpful diagnostic tools and procedures and finally take a closer look at
the way multicast listeners communicate with multicast routers.

18.1.1 Terminology

In section 3.5 we have already seen that a multicast address consists of a
ff00::/8 prefix followed by a flag nibble, a scope nibble and finally a multicast
group ID of 112 bits. The multicast address identifies a multicast group; both
terms are often used synonymously, though the term multicast group is also
used for all the multicast listeners, the nodes that have sent a multicast listener

264 18 Multicasts Beyond the Link-local Scope

report to signal that they want to receive packets sent to the multicast address.
Listeners are also called receivers or multicast group members. A new listener
is said to join or subscribe to a multicast group and a listener that stops
listening leaves the multicast group.

Nodes that send packets to a multicast group are called senders; they
are identified by the source address of the packets they send to the multi-
cast group, so the term is slightly imprecise with respect to nodes that have
configured multiple addresses to a single interface.

Multicast routers receive multicast groups that they don’t necessarily lis-
ten to themselves and forward them towards actual listeners. The interface
that they receive a multicast packet on is called the upstream or incoming
interface, all interfaces that they send the packet to are called downstream
or outgoing interfaces. The incoming interface depends on the source of the
packet.

Multicast routers maintain multicast routing tables that keep track of the
outgoing interface for all multicast packets. In the most simple case they store
a list of interfaces for every multicast group while in more complex situations
they store a list of interfaces for pairs of senders and multicast groups. These
source-specific multicast routes are often written as (S, G), where S is the
sender address and G the multicast address. If the table entry doesn’t contain
a specific sender address, this is called a wildcard route, written as (∗, G).

18.1.2 Multicast Diagnostics

When we try to solve multicast-related network problems, then usually we
first take a closer look at the receiving node. Generally, the netstat com-
mand supports a -g option that displays all the multicast groups that a node
receives. Its output format looks differently on the various Unixen and in some
cases it is possible to get more information using less portable commands.

Debian Sarge Both netstat and ip show us the currently subscribed mul-
ticast groups:

debian-host:/tmp# netstat -g -n

IPv6/IPv4 Group Memberships

Interface RefCnt Group

--------------- ------ ---------------------

lo 1 224.0.0.1

lo 1 ff02::1

eth0 1 ff02::1:ff00:0

eth0 2 ff02::1:ff65:23de

eth0 1 ff02::1

The RefCnt column shows the number of sockets that listen to the multicast
group.

18.1 A Closer Look at Multicasts 265

debian-host:/tmp# ip -6 maddr show

1: lo

inet6 ff02::1

2: eth0

inet6 ff02::1:ff00:0

inet6 ff02::1:ff65:23de users 2

inet6 ff02::1

Here only those addresses that have multiple sockets listening to them display
the number of sockets as users, as the second to last line shows.

FreeBSD 6.1 The netstat -g output here includes not only the group
memberships, but also the multicast routing table, which should be empty
right now.

freebsd-host# netstat -g

[. . .]
IPv4/IPv6 Multicast Group Memberships

Group Gateway Netif

ff02:1::2:e1c4:d5c8 33:33:e1:c4:d5:c8 lnc0

ff02:1::1 33:33:00:00:00:01 lnc0

ff02:1::1:ff5b:915b 33:33:ff:5b:91:5b lnc0

224.0.0.1 <none> lo0

ff01::1 <none> lo0

ff02:3::2:e1c4:d5c8 <none> lo0

ff02:3::1 <none> lo0

ff02:3::1:ff00:1 <none> lo0

The display here embeds the scope ID, which identifies the interface, in the
second block of the multicast address, so ff02:1::1 really means ff02::1%1.

Alternatively, the FreeBSD-specific command ifmcstat displays similar
information in a different format.

Solaris 10 We can use the -f inet6 option of netstat to list only IPv6
multicast groups:

netstat -f inet6 -g

Group Memberships: IPv6

If Group RefCnt

----- --------------------------- ------

lo0 ff02::1:ff00:1 1

lo0 ff02::1 1

pcn0 ff02::202 1

pcn0 ff02::1:ffa4:2ce6 2

pcn0 ff02::1 3

112

So checking which multicast groups a node receives poses no problem as
long as we have access to the node itself.

266 18 Multicasts Beyond the Link-local Scope

Especially when we test multicast routing we need a tool to make a node
join a given multicast address. There is no standard tool available for this;
however, from my home page (http://www.benedikt-stockebrand.net/)
there is a simple tool available to do exactly that. It is called mcjoin and
takes a single multicast address as a parameter. When it starts, it joins the
multicast group so that we can ping the node at that multicast address.

Testing from another node is just as easy. The ping command usually
serves well if we want to reach all nodes that receive a multicast group. Un-
fortunately, traceroute usually can’t handle multicast addresses. This makes
it sometimes difficult to understand what exactly happens. Additionally, the
hop limit that the ping program uses with multicast destinations may be
inappropriate for our purposes:

Debian Sarge By default, ping6 sets the hop limit on packets to multicast
addresses to 1. We need to use the -t option to set it to a larger value.

FreeBSD 6.1, Solaris 10 The ping programs here use the standard hop
limit even on packets to multicast addresses. 113

Another tool that is indispensable for network debugging is our favourite
packet sniffer. When we use it on any node that we expect to handle multicast
packets, rather than sniffing the network itself, then we must ensure that the
sniffer does not switch the network interface into promiscuous mode; otherwise
we may change the behaviour of that node quite significantly when we start
the sniffer.

ethereal The capture dialog box has a check box that disables promiscuous
mode support in ethereal.

snoop (Solaris 10) The -P option disables the use of promiscuous mode.

tcpdump The option -p prevents tcpdump from switching an interface into
promiscuous mode. 114

If we run the packet sniffer on a separate machine attached to a subnet we
want to monitor, then we may need promiscuous mode to see all the packets
there.

18.1.3 Inside IPv6: Multicast Listener Discovery (MLD)

What happens when we start mcjoin? Using a packet sniffer we can observe
part of the multicast listener discovery (MLD) protocol that tells routers and
switches about the multicast groups that nodes on a subnet want to receive.

There are two versions of multicast listener discovery: version 1 (MLDv1)
as of RFC 2710 [23] and version 2 (MLDv2) as of RFC 3810 [36]. Both differ
in the ICMPv6 type numbers they use, so depending on the Unix we use we
can observe either MLDv1 or MLDv2 packets with our packet sniffer.

18.1 A Closer Look at Multicasts 267

Debian Sarge The standard kernel uses MLDv2 packets.

FreeBSD 6.1, Solaris 10 These use MLDv1 packets. 115

For our tests we use the site-local transient multicast address ff15::ffff;
even if we were connected to an upstream provider, using site-local multicasts
shouldn’t cause any trouble, and using a transient address will avoid any
interference with established multicast services.

When we start mcjoin ff15::ffff on a FreeBSD machine, the packet
sniffer shows a summary buffer like this:

Time Source Destination Proto. Info

0.00 fe80::20c:29ff:fed8:4d3f ff15::ffff ICMPv6 Multicast listener

report

7.20 fe80::20c:29ff:fed8:4d3f ff15::ffff ICMPv6 Multicast listener

report

So as soon as we join a multicast group the kernel sends these multicast listener
report packets out. They tell all routers and multicast-aware (“intelligent”)
switches that the node wants to receive multicast packets sent to ff15::ffff.
Now we take a look at the first packet’s details. The packet starts with an
Ethernet header which is irrelevant except for the destination address:

Ethernet II, Src: 00:0c:29:d8:4d:3f, Dst: 33:33:00:00:ff:ff

[. . .]

The destination address starts with 33:33, which is the address prefix that
Ethernet uses for link-layer multicasts. The remaining four bytes are the
same as the last four bytes in the IPv6 multicast address. Generally, IPv6
multicast addresses are mapped to Ethernet multicast addresses in this way.
Next follows the IPv6 header. The interesting fields are these:

Internet Protocol Version 6

[. . .]
Next header: IPv6 hop-by-hop option (0x00)

Hop limit: 1

Source address: fe80::20c:29ff:fed8:4d3f

Destination address: ff15::ffff

So following the base header there is a hop-by-hop option header which we’ll
take a look at below. The hop limit is set to 1, so the packet won’t be routed
beyond the subnet. The source address of all multicast listener reports is a
link-local unicast address. Finally, the packet is sent to the multicast address
that we want to join.

The hop-by-hop option header is vital for multicast listener reports:
Routers as well as intelligent switches watch for this option header. When
they receive a packet with this header, they know they need to inspect it even
if the destination address isn’t theirs.

268 18 Multicasts Beyond the Link-local Scope

Hop-by-hop Option Header

[. . .]
Router alert: MLD (4 bytes)

As a hop-by-hop header it signals all switches and routers that it contains
information relevant to them. The subtype, router alert, contains the ac-
tual information—the packet is a multicast listener discovery packet. Finally
follows the ICMPv6 packet that contains the relevant information.

Internet Control Message Protocol v6

Type: 131 (Multicast listener report)

Code: 0

[. . .]
Maximum response delay: 0

Multicast Address: ff15::ffff

The ICMPv6 type and code identify the packet as a multicast listener report,
version 1. The maximum response delay is irrelevant for a listener; we’ll see
later on how multicast routers use this field. Finally follows the multicast
address that we subscribe to.

A few seconds after the node sent its first listener report, it sends a second
report in case the first packet got lost. There is no universal standard how
often and with what delay these additional packets are sent; RFC 2710 [23,
section 7] explains the details and the rationale if you want to tune these
parameters.

When we terminate the mcjoin command, then the kernel sends out an-
other packet. This time it is a multicast listener done packet that notifies the
switches and routers that we are no longer interested in the multicast group.

Time Source Destination Proto. Info

11.1 fe80::20c:29ff:fed8:4d3f ff02::2 ICMPv6 Multicast listener

done

Again the packet details are worth a closer look. The Ethernet header doesn’t
show anything interesting, so we start with the IPv6 header:

Internet Protocol Version 6

[. . .]
Next header: IPv6 hop-by-hop option (0x00)

Hop limit: 1

Source address: fe80::20c:29ff:fed8:4d3f

Destination address: ff02::2

Again we see that there is a hop-by-hop option header following. Again the
hop limit is set to 1 and the source address is a link-local unicast address. But
the destination address is different: The multicast listener done packet isn’t
sent to the multicast address but to the all routers link-local multicast group
ff02::2. The hop-by-hop option header again tells switches and routers that
this is a multicast listener discovery packet.

18.1 A Closer Look at Multicasts 269

Hop-by-hop Option Header

[. . .]
Router alert: MLD (4 bytes)

Finally the ICMPv6 packet tells all routers that we are leaving a multicast
group.

Internet Control Message Protocol v6

Type: 132 (Multicast listener done)

Code: 0

[. . .]
Maximum response delay: 0

Multicast Address: ff15::ffff

The ICMPv6 type differs from that of a multicast listener report. But again
there is a maximum response delay that is irrelevant for a multicast listener
done packet and the multicast address that we are now leaving.

If we do the same with a Debian node, then we see the equivalent MLDv2
behaviour. When we start the mcjoin command, then we first notice that
there is only a single packet sent.

Time Source Destination Proto. Info

0.00 fe80::20c:29ff:fe59:60a9 ff02::16 ICMPv6 Multicast Listener

Report Message v2

The destination address is not the multicast address to listen to, but the all
MLDv2-capable routers multicast group ff02::16, which all MLDv2 multicast
routers listen to.

Ethernet II, Src: 00:0c:29:59:60:a9, Dst: 33:33:00:00:00:16

Destination: 33:33:00:00:00:16

[. . .]

Accordingly, the Ethernet multicast address is now 33:33:00:00:00:16; us-
ing this address instead of the joined multicast address ensures that the in-
formation reaches the receivers that need to know: the switches and routers
in the subnet. The IPv6 base header doesn’t show any relevant changes com-
pared to MLDv1:

Internet Protocol Version 6

Next header: IPv6 hop-by-hop option (0x00)

Hop limit: 1

Source address: fe80::20c:29ff:fe59:60a9

Destination address: ff02::16

The only difference is the new destination address explained above. Similarly,
the hop-by-hop option header again contains a router alert.

Hop-by-hop Option Header

[. . .]
Router alert: MLD (4 bytes)

270 18 Multicasts Beyond the Link-local Scope

The final ICMPv6 part of the packet looks quite different than its MLDv1
cousin:

Internet Control Message Protocol v6

Type: 143 (Multicast Listener Report Message v2)

Code: 0 (Should always be zero)

[. . .]
Changed to exclude: ff15::ffff

Mode: Changed to exclude

Aux data len: 0

Multicast Address: ff15::ffff

The first thing we notice is the fact that the ICMPv6 type has changed to 143.
Beyond that, the only resemblance to an MLDv1 multicast listener report is
the field with the multicast address that we want to join. The “aux data len”
indicates that there is no “auxiliary data” following; while MLDv2 doesn’t
use any “auxiliary data”, later versions might do, so MLDv2 already provides
for them.

The most important difference between MLDv1 and MLDv2 is the added
source filtering feature: A listener may explicitly tell not only which multicast
address it is interested in, but from which source addresses it is willing to
receive packets to that multicast address. This listener report states that we
are willing to receive packets to ff15::ffff except from source addresses
that are in the attached list—which happens to be empty.

When we kill the mcjoin process, then the kernel sends another multicast
listener report packet.

Internet Control Message Protocol v6

Type: 143 (Multicast Listener Report Message v2)

Code: 0 (Should always be zero)

Checksum: 0xe5e9 (correct)

Changed to include: ff15::ffff

Mode: Changed to include

Aux data len: 0

Multicast Address: ff15::ffff

It is the equivalent of the MLDv1 multicast listener done packet, but MLDv2
doesn’t use different packet types for listener report and listener done messages
anymore. Instead, the only difference to the initial packet is that it tells the
switches and routers that the node is only willing to receive packets from
source addresses included in the attached list—which happens to be empty
again.

Why did we use mcjoin to join a multicast group and didn’t use those
multicast groups we already know, like the solicited-node multicast groups
or the all-nodes link-local multicast group? Because these are special cases:
Since all nodes must join the all-nodes link-local multicast group, it doesn’t
make sense to do multicast listener discovery here. And when a node brings
up a new address on an interface, it needs to subscribe to the solicited-node

18.2 Protocol Independent Multicast—Dense Mode (PIM-DM) 271

multicast address for its duplicate address detection; but since it isn’t allowed
to use the intended address yet, it has to use ::, the unspecified address;
RFC 3590 [50] has the details.

At this point we need a multicast router to see how multicast listener
discovery between routers and hosts works. So we defer further investigations
to section 18.2.3 and install a multicast router next.

18.2 Protocol Independent Multicast—Dense Mode
(PIM-DM)

There is a major difference between unicast and multicast routing: With mul-
ticasts there are no static routes. All multicast routing is done dynamically,
using multicast listener discovery to find all nodes that actually want to re-
ceive multicast packets and some inter-router protocol to ensure that multicast
routers are aware of each other.

In this section we start with the simple scenario that we have a well-defined
network cloud and want to route multicast traffic within this cloud only. The
routing protocol we use here is called protocol independent multicast—dense
mode (PIM-DM). It uses an optimized flooding algorithm which works auto-
matically without any substantial configuration.

18.2.1 Installation

Figure 18.1 shows the simple test environment we use. We have three subnets,
each with a host attached to it, and two multicast routers between the subnets.
The routers are set up as advertising routers and we use RIPng for dynamic
routing. Next we need to install the routing daemon software.

2001:db8:fedc:1::/64 2001:db8:fedc:2::/64 2001:db8:fedc:3::/64

Multicast
Router

Multicast
Router

Debian
Host

FreeBSD
Host

Solaris
Host

Fig. 18.1. A multicast routing test setup

Debian Sarge There is a recent port of the BSD/KAME implementation of
PIM-DM available at http://sourceforge.net/projects/mcast-tools/.
Unfortunately, it doesn’t compile on Debian Sarge, apparently due to some
header file problems.

272 18 Multicasts Beyond the Link-local Scope

For now this leaves us with three options: Skip to section 18.3 for a differ-
ent multicast routing protocol, wait until the mcast-tools have been made
available as a binary package and then treat them like the FreeBSD package, or
use ecmh, an “MLD proxy” available at http://unfix.org/projects/ecmh/.
While ecmh will cause a network meltdown in redundant network topologies,
it may be useful as a workaround in some cases. The Debian package available
at the web site, currently version 2005.02.09, installs out of the box.

While experimenting with ecmh and PIM-DM it became apparent that
interoperation can still be a problem, so using both together is not
advisable at this time.

?

FreeBSD 6.1 First we build and install a kernel with the additional kernel
options MROUTING and PIM. Then we install the mcast-tools package from
the ports collection. Finally we add a line

/etc/rc.conf

mroute6d_enable=YES

to /etc/rc.conf and either reboot or start the pim6dd daemon using the
mroute6d boot script.

Solaris 10 There is no support for multicast routing available. 116

VMware Workstation (at least version 5.5.1) has a problem with the
LANCE/PCnet network card emulation: The Ethernet multicast fil-
tering doesn’t work and the multicast packets never arrive. If you

?
want to run multicast routing in a VMware environment, then it is easiest to
use a 64 bit CPU and run the virtual machines in 64 bit mode, which emulates
an Intel Gigabit Ethernet adapter that doesn’t exhibit these problems. Putting
the interfaces on the multicast routers (not the hosts) into promiscuous mode
also works, but in some situations causes undesirable side effects.

We are now ready to run a first quick test to see if everything works as
expected.

� All nodes must show properly configured routable addresses.
� The routers must have a proper route to the subnet that they don’t

connect to directly.
� The hosts and routers must be able to ping each other.
� If any host starts mcjoin with a routable multicast address, then all

other hosts must be able to ping this multicast address.

18.2.2 Essential Configurations: Filters

PIM-DM uses a flooding algorithm to distribute multicast packets, so it is vital
to keep PIM-DM routers from distributing multicast packets beyond their

18.2 Protocol Independent Multicast—Dense Mode (PIM-DM) 273

scope. On border routers that connect to the edge of any given scope we need
to restrict the propagation of multicasts with some additional configuration.

The pim6dd configuration only allows for filters that explicitly prevent the
routing of certain multicast addresses on certain interfaces. This is unfortu-
nate; it would be nicer to configure explicitly which multicast addresses to
route to which interfaces.

As a reasonable starting point for border router configurations I suggest a
configuration like

pim6dd.conf

filter ff20::-ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff lnc1 lnc0

filter ff00::-ff05:ffff:ffff:ffff:ffff:ffff:ffff:ffff lnc1

filter ff10::-ff15:ffff:ffff:ffff:ffff:ffff:ffff:ffff lnc1

if we have an inner interface lnc0 and a border interface lnc1. This confi-
guration blocks all packets with a flag nibble that is neither 0 nor 1 on all
interfaces and all multicast packets with a scope smaller than site-local going
out of the border interface lnc1.

The filter configuration only filters outbound packets. That may be enough
in some cases, but in general it seems preferable to use a packet filter for better
control of inbound and outbound multicast packets.

18.2.3 Inside IPv6: More on Multicast Listener Discovery

With a multicast router at hand we can now continue to explore the multicast
listener discovery protocol.

First we turn off all nodes and start the packet sniffer. Then we bring
up a multicast router. Between the duplicate address detection and multicast
listener reports for some essential multicast groups that a router listens to we
should observe some multicast listener queries like these:

Time Source Dest. Proto. Info

4.260603 fe80::20c:29ff:fe57:5309 ff02::1 ICMPv6 Multicast

listener query

5.534291 fe80::20c:29ff:fe57:5309 ff02::1 ICMPv6 Multicast

listener query

129.469979 fe80::20c:29ff:fe57:5309 ff02::1 ICMPv6 Multicast

listener query

254.649394 fe80::20c:29ff:fe57:5309 ff02::1 ICMPv6 Multicast

listener query

With these the router attempts to find all multicast listeners in the subnet.
It first sends two queries in short succession to deal with the situation that
the first packet is lost, and afterwards periodically sends new queries to see if
listeners have started or stopped.

The query packet has a link-local source address, the all-nodes link-local
multicast address ff02::1 as destination address and a hop limit of 1. It

274 18 Multicasts Beyond the Link-local Scope

contains a hop-by-hop option header with a router alert. Finally the packet
contains an ICMPv6 payload:

Internet Control Message Protocol v6

Type: 130 (Multicast listener query)

Code: 0

Maximum response delay: 10000

Multicast Address: ::

[. . .]

Here the router asks all nodes if they are listening to any multicast address; if
the “Multicast Address” field contained a multicast address rather than the
unspecified address, then the router would only ask the other nodes about
that specific multicast address, but at this time the router wants to get an
overview about all multicast addresses that have listeners, so in this case the
field contains ::. To avoid a network overload, the router specifies a maximum
response delay of 10 000 ms to make all hosts wait a random interval between
zero and ten seconds before they reply.

The multicast listener query looks the same with both MLDv1 and
MLDv2, but there is a difference that tells all the listeners that in this case the
router speaks MLDv1: The MLDv2 version of the query contains additional
data and is therefore longer.

So what happens if there are any listeners around? They will pick a
random delay interval of up to the maximum response delay and then they
will send their listener reports. MLDv1-only listeners will listen for other
replies and suppress their own if another node signals that it is listening to
the same multicast group that they listen to; MLDv2 listeners will send their
announcement in any case. Additionally, if an MLDv2 listener detects that
the router sent an MLDv1 query, then it will reply with an MLDv1 rather
than an MLDv2 report.

Next we start mcjoin on a new multicast address. As we have seen before,
the node sends its multicast listener report; nothing else happens. When
we stop mcjoin again, then something new happens: The router will follow
up on the listener done packet and do a listener query, but this time it will
specifically ask if any other node still listens to the multicast group that
mcjoin just stopped listening to.

Multicast routers aren’t required to keep track of which nodes, or even
how many nodes, listen to any given multicast group. So as soon as a listener
leaves they check if any other listeners remain. This saves resources on the
router and makes the behaviour more robust in the case that a listener is
forcefully disconnected before it can send a listener done message.

Another surprising behaviour occurs when we start up a second router:
There is only one router sending listener queries; more specifically, the router
with the lower interface ID becomes the querier and is solely responsible for
sending listener queries to the subnet.

18.2 Protocol Independent Multicast—Dense Mode (PIM-DM) 275

As usual we have ignored a host of interesting details of the multicast
listener discovery protocol. But as long as we don’t try to implement MLD
ourselves, this outline suffices to understand how MLD works and what the
traffic we observe with a packet sniffer means. Beyond that, RFC 2710 [23]
and RFC 3810 [36] are the definitive specifications of MLDv1 and MLDv2,
respectively.

18.2.4 Inside IPv6: The PIM-DM Protocol

Now that we have two multicast routers running PIM-DM in our environment,
we can also observe PIM-DM at work.

In our test setup in figure 18.1 on page 271 we connect a packet sniffer to
the middle subnet. As long as we don’t actually route any multicast traffic, all
we see are PIM hello messages; the routers send these approximately every
thirty seconds to the all PIM routers multicast group ff02::d. Thanks to
these, both routers know of each other.

The PIM packets use their own protocol type 103 (0x67) rather than UDP.
The hello packets only contain a packet type that identifies them as hello
messages and a hold time that tells the peer routers for how long they should
assume the router online if they don’t receive any further hello messages.

Next we run mcjoin ff15::ffff on the Solaris host on the right subnet.
The right router will receive the multicast listener report, so it knows that it
must now forward multicast packets to this address. At this point we won’t
notice anything in the packet sniffer.

Now we ping the multicast address from the Debian host on the left subnet.
Since Debian uses a hop limit of 1 for pings to multicast addresses, we must use
the option -t 3 for this to work. At this point something unexpected happens:
Without any further PIM traffic between the routers the ping packets are
routed from the Debian host to the Solaris host.

What happens here is that PIM-DM initially floods all multicast packets
through the entire network cloud. The left router receives the packet on its
left interface and sends it out through all other interfaces, in this case its
right interface to the middle subnet. There the right router picks it up on its
left interface and forwards it again, this time to the subnet with the listening
Solaris host. The Solaris host then sends its unicast reply back.

Does PIM-DM flood all packets through the entire network cloud? No,
and if we stop the mcjoin process running on the Solaris host, then we notice
some additional PIM traffic in the middle subnet: Both routers send PIM
join/prune messages. With these messages routers tell each other that they
don’t have any listeners for a specific multicast group on their other interfaces.
As soon as a router realizes that its peer doesn’t want to receive the specific
multicast address it will stop to forward them.

When the mcjoin process dies, the Solaris host sends an MLD listener done
message to the right router. When the Debian host sends another ping, the left

276 18 Multicasts Beyond the Link-local Scope

router receives it and forwards it to the middle subnet. There the right router
receives it, realizes that it doesn’t have any listener for the multicast address
on its right interface and sends a join/prune message to tell the left router
that it doesn’t want to receive packets to this multicast address anymore. The
join/prune message looks like this:

Internet Protocol Version 6

[. . .]
Hop limit: 1

Source address: fe80::20c:29ff:fe98:832a

Destination address: ff02::d

Protocol Independent Multicast

Version: 2

Type: Join/Prune (3)

[. . .]
PIM parameters

Upstream-neighbor: fe80::20c:29ff:fe57:5313

Groups: 1

Holdtime: 210

Group 0: ff15::ffff/128

Join: 0

Prune: 1

IP address: 2001:db8:fedc:2:20c:29ff:fe59:60a9/128

The right router sends the message to the PIM multicast address from its
link-local address, using a hop limit of 1. The PIM payload has the type
“join/prune” and tells the upstream neighbor, the left router in our example,
to stop forwarding multicasts to the multicast address ff15::ffff if they have
the source address shown in the last line. The hold time is set to 210 seconds,
so this prune request expires in three and a half minutes.

The left router then sends a similar message, effectively confirming that it
isn’t interested in these multicasts, either. While this doesn’t make sense in a
two router setup like ours, it is necessary as soon as a third router is attached
to the network.

The left router then keeps forwarding the multicast packets for a little
longer. It waits for another router to send a “join/prune” message that signals
it wants to keep receiving these multicasts. Since no router sends such a join
message, three seconds later the left router stops forwarding the ping packets
for 210 seconds.

After those 210 seconds the left router starts to forward the ping packets
again and the same process repeats.

What happens if we restart the mcjoin program on the Solaris host? Then
the Solaris host will send another MLD report and the right router will send
a PIM graft message to the middle subnet. The left router acknowledges this
graft message with a PIM graft acknowledgment message and starts forward-
ing the ping packets again.

18.2 Protocol Independent Multicast—Dense Mode (PIM-DM) 277

So far we have assumed that a multicast router will forward an incoming
multicast packet on all interfaces except the one that it received the packet
on and those that it has received a prune message on. That is true in our test
setup, but in a redundant network topology this behaviour would cause the
packet to loop through the network until its hop limit expires, possibly causing
a network meltdown. To avoid this, PIM-DM uses yet another optimization:
When it receives a multicast packet it first does a reverse path forwarding
(RPF) check : It verifies that the interface on which the packet arrived and
the interface to which unicast packets to the source address are routed back
are actually the same. If they are not, then it assumes a routing loop and
uses a PIM assert message exchange to decide from which interface to accept
packets with this source. The router will then only accept packets from the
given source address if they arrive on the chosen interface, thereby eliminating
routing loops.

As usual, this overview of the PIM-DM protocol doesn’t cover all the de-
tails. If you need or want to learn more about the protocol, then RFC 3973 [1]
is the definitive reference.

18.2.5 Advantages and Limitations

The PIM-DM protocol and its associated algorithms have a few properties
that limit it to a certain kind of environment only. The entire design of PIM-
DM is based on the assumption that most multicast packets must be routed
to most connected subnets and that it is more efficient to track exceptions
from this assumption than to keep “listener lists” that contain all listeners to
a given multicast group.

This assumption has some positive effects: The PIM-DM protocol is rea-
sonably simple, it doesn’t need any configuration beyond filters on border
routers and it is quite efficient at distributing packets to a network cloud with
densely populated listeners.

But if the assumption is wrong, then PIM-DM won’t work. If the listeners
are sparsely distributed, then the majority of multicast routers need to keep
track of excessively large pruning tables. The initial flooding of multicast
packets will become a major burden to the entire network.

In short, PIM-DM doesn’t scale too well. It works fine in a reasonably sized
local network cloud, but it can’t possibly work in the Internet at large. This
leads to another multicast routing protocol that assumes a sparsely distributed
listener community: PIM-SM, which we investigate next.

278 18 Multicasts Beyond the Link-local Scope

18.3 Protocol Independent Multicast—Sparse Mode
(PIM-SM)

While the PIM-DM protocol assumes that multicast listeners are densely dis-
tributed, the protocol independent multicast—sparse mode (PIM-SM) proto-
col caters for the opposite situation and assumes that there are few listeners
to any specific multicast group.

PIM-SM scales much better than PIM-DM, but the better scalability
comes at a price: the PIM-SM protocol is far more complex than PIM-DM
and it takes some essential configuration to make it work.

18.3.1 Installation and Basic Configuration

As with PIM-DM, we first need to build a kernel that can do multicast routing
and install some additional multicast routing software.

Debian Sarge with mrd6 The mcast-tools package, which isn’t avail-
able for Debian yet, also contains the same pim6sd daemon as the FreeBSD
variant. The mrd6 package, available from http://hng.av.it.pt/mrd6/ as
source code and from http://www.backports.org/ as a Debian binary pack-
age, supports PIM-SM and as of version 0.9.5 it runs out of the box; this makes
it the first choice for multicast routing on Debian at least at this time.

FreeBSD 6.1 We need a custom kernel as we have built it in the previous
section for PIM-DM. The mcast-tools package that we have installed for
PIM-DM also contains a PIM-SM routing daemon called pim6sd. To enable
the daemon we need the lines

/etc/rc.conf

mroute6d_enable=YES

mroute6d_program=/usr/local/sbin/pim6sd

in /etc/rc.conf and a configuration file /usr/local/etc/pim6sd.conf

which doesn’t need to contain anything on most routers.

Solaris 10 Again, Solaris doesn’t offer any multicast routing functionality.
117

Next we need to set up a special functionality on at least one of the routers
in our multicast routing cloud: We need a candidate rendezvous point (Cand-
RP). PIM-SM doesn’t flood the entire routing cloud with initial packets, so
there has to be another way to join a multicast group; the rendezvous points
(RPs) serve this purpose. When a multicast router receives a join report from
a host, then it contacts the rendezvous point managing the multicast group to
set up the routing. If the router receives a packet to a multicast group, then it
forwards it to the rendezvous point using unicast and a special encapsulation
mechanism; the rendezvous point then distributes the decapsulated packet to

18.3 Protocol Independent Multicast—Sparse Mode (PIM-SM) 279

the entire multicast group unless an additional optimization that we’ll consider
later on kicks in.

Configuring a rendezvous point isn’t particularly difficult—we just need
to tell the router that it is a candidate rendezvous point for a given multicast
prefix or set of prefixes:

Debian Sarge with mrd6 A minimal configuration looks like this:

/etc/mrd6.conf

pim {

disable bsr-candidate;

enable rp-candidate;

}

groups {

ff00::/8 { pim rp_adv = true; }

}

Strictly speaking the disable bsr-candidate statement isn’t necessary, but
we only look at this in the following section.

FreeBSD 6.1 Different than mrd6, the pim6sd daemon doesn’t expect a
configuration that tells it for which multicast prefixes to serve as a rendezvous
point. So all we need are the first two lines of

/usr/local/etc/pim6sd.conf

cand_rp;

cand_bootstrap_router;

group_prefix ff00::/8;

in /usr/local/etc/pim6sd.conf; the second line is necessary only on at least
one router; we’ll investigate this in the next section. The third line restricts
rendezvous services to the given prefix.

When we use pim6sd as the rendezvous point, then it is essential to use
its highest address in the configuration of all other routers below as the ren-
dezvous point address; pim6sd will discard all RP-related traffic that arrives
at a different address. 118

On all other routers we need to configure where the rendezvous point
for a given multicast prefix is. Assuming that our rendezvous point has an
address 2001:db8:fedc:ffff::ffff, the configuration on these routers looks
like this:

Debian Sarge with mrd6 The configuration looks similar to that above,
but we need to change two things: We disable the rp-candidate option and
for the multicast prefix ff00::/8 we don’t tell the daemon to advertise itself
as a rendezvous point but where to find the rendezvous point instead.

280 18 Multicasts Beyond the Link-local Scope

/etc/mrd6.conf

pim {

disable bsr-candidate;

disable rp-candidate;

}

groups {

ff00::/8 { pim { rp 2001:db8:fedc:ffff::ffff; } }

}

FreeBSD 6.1 If we want to use a single rendezvous point for all multicast
addresses, then the line

/usr/local/etc/pim6sd.conf

static_rp ff00::/8 2001:db8:fedc:ffff::ffff;

in /usr/local/etc/pim6sd.conf is all we need. 119

18.3.2 Bootstrap Routers

Configuring the rendezvous point manually is not the originally intended way
to distribute the rendezvous points within a routing cloud, but due to a prob-
lem with mrd6 we don’t have another choice if we are using mrd6 based routers.
If we use pim6sd, or the bug in mrd6 gets fixed, then we can use bootstrap
routers (BSRs) to disseminate the rendezvous point configuration throughout
the routing cloud.

The basic concept works like this: In a routing cloud we have a num-
ber of special routers called candidate bootstrap routers (CandBSRs). Using
flooding between the multicast routers these candidate bootstrap routers find
each other and use a simple election algorithm to choose one of them as the
bootstrap router. The address of the bootstrap router is then flooded to all
multicast routers in the cloud. When a candidate rendezvous router comes
up, it first asks its peers about the bootstrap router. Then it contacts the
bootstrap router, offering its service as a rendezvous router. The bootstrap
router periodically floods a list of active rendezvous routers to all multicast
routers. They can then choose the correct rendezvous router when they start
to provide routing functionality for a new multicast group.

Unfortunately mrd6 as of version 0.9.5 doesn’t accept these lists of active
rendezvous routers from the bootstrap router, so we had to configure them
statically. If we still want to use bootstrap routers at least as far as possible,
then we need to adapt our configuration accordingly.

Setting up a candidate bootstrap router is simple, even with mrd6:

Debian Sarge with mrd6 We just change the bsr-candidate statement
in the pim section to enable bsr-candidate.

18.3 Protocol Independent Multicast—Sparse Mode (PIM-SM) 281

FreeBSD 6.1 The pim6sd daemon won’t start as a rendezvous point un-
less it can register with a bootstrap router; for that reason we needed the
cand_bootstrap_router statement in the configuration above. So there is
no reason to change any configuration. 120

On all other routers we can now remove the statically configured ren-
dezvous points:

Debian Sarge with mrd6 As explained before, this doesn’t work (yet).

FreeBSD 6.1 We simply remove the static_rp statements from the con-
figuration. We can’t delete the entire configuration file because then pim6sd

won’t start, but an empty file is perfectly fine for many routers. 121

18.3.3 Running PIM-SM

It should be reasonably simple to set up a test environment this way. If we
use the same environment as in section 18.2.1, then we can use the same basic
test sequence as there.

PIM-SM differs from PIM-DM in a major way: It behaves fairly slug-
gishly if we add another router. Once the router has figured out where the
rendezvous routers are, then a non-RP router runs quite nicely. But if a ren-
dezvous point or the bootstrap router is restarted, then it takes some time
for the routing cloud to recover. A number of timeouts default to 150 sec-
onds, so it may take several minutes for the PIM-SM cloud to converge to a
stable state if anything happens, especially if both the rendezvous point and
bootstrap router run on the same node or are rebooted simultaneously.

This has some consequences: Restarting a PIM-SM daemon does have
some impact on the multicast routing, especially if we restart a rendezvous
point or the bootstrap router. As with RIPng, we should leave PIM-SM time
to converge to normal operations. During that time we should watch the
routers rather than change the configuration too quickly.

There are tools to watch the routing daemons at work:

Debian Sarge with mrd6 The command mrd6sh lets us manipulate a run-
ning mrd6 daemon. Since this won’t write updates to the configuration, using
it for these purposes is likely to cause trouble, though. But running mrd6sh

show shows a fairly detailed status of the running daemon.

FreeBSD 6.1 Running the command pim6stat shows similar status infor-
mation of the running daemon. 122

Beyond that a packet sniffer is sometimes useful to watch PIM-SM at
work.

282 18 Multicasts Beyond the Link-local Scope

18.3.4 Inside IPv6: The PIM-SM Protocol

To understand the PIM-SM traffic we need to take a closer look at the protocol
again. Since PIM-SM is far more complex than PIM-DM, we can’t look at all
the packets in a sniffer, though.

When we use a packet sniffer to observe the PIM-SM traffic, we notice
first that PIM-SM uses the same protocol type 103 (0x67) and multicast
group ff02::d as PIM-DM. Even the hello messages between the routers
look strikingly similar. And as we’ll see later on, other message types are also
shared between the protocols.

The hello messages within a single subnet serve an additional purpose: Ev-
ery subnet has a designated router (DR), which is the one to receive multicast
packets and forward them to the appropriate rendezvous point. All routers
in a subnet watch for the hello packets. The one with the largest IP address
becomes the designated router.

The bootstrap messages that PIM-SM routers flood through the cloud
contain the IP address of the bootstrap router and a list of rendezvous points
with the multicast address prefixes they are willing to serve.

When a new candidate bootstrap router comes up and realizes that there
is either no bootstrap router yet or the current bootstrap router has a lower
IP address than itself, then it will start to send out bootstrap packets. The
candidate bootstrap router with the highest address assumes the role of boot-
strap router and sends bootstrap packets in a 60 second interval to the routing
cloud. The other candidates just watch for periodic bootstrap packets and if
they don’t arrive in time, they will start to send them out themselves again.

The flooding mechanism is similar to that of PIM-DM but is only used for
PIM-SM internal purposes, not to distribute routed multicast packets.

When a candidate rendezvous point comes up, then it first obtains the
address of the bootstrap router through the bootstrap messages from its peers.
Then it sends a candidate RP advertisement to the bootstrap router; this is
a unicast packet that contains a list of prefixes that the candidate rendezvous
point is willing to handle as a rendezvous point. The bootstrap router will
then include the new rendezvous point in its periodic bootstrap messages.

The rendezvous point keeps sending its advertisement to the bootstrap
router at 60 second intervals. If these advertisements cease to arrive at the
bootstrap router, then the bootstrap router will drop the rendezvous router
from its bootstrap messages.

When a host starts to send multicast packets to the subnet it connects to,
then the designated router picks them up and forwards them to the rendezvous
point in a register message. These packets are sent unicast to the rendezvous
point; besides a few flags they contain the entire original packet.

If the rendezvous point doesn’t know of any listeners to the multicast
group, then it sends a register stop message back to the designated router.

18.3 Protocol Independent Multicast—Sparse Mode (PIM-SM) 283

This packet tells the designated router to stop sending register packets for
this multicast address.

When a listener subscribes to a multicast group, it sends a join message to
its upstream peer—its next peer towards the rendezvous point. The upstream
peer sends another such join message and so on, all the way to the rendezvous
point, which then starts to send packets for that multicast group back. With
multiple listeners, this creates a routing tree with the rendezvous point as the
root.

When a listener shuts down, it sends a prune message to signal its up-
stream router that it doesn’t need that multicast group anymore. If the
upstream router doesn’t have any more listeners for the multicast group, it
will send another prune message to its upstream and so on.

The join and prune messages use the same packet type as the join/prune
messages with PIM-DM.

The routing tree with the rendezvous point at the root is called a (shared)
rendezvous point tree (RP-tree), because it is used for all packets to the multi-
cast group independently of the source. If there are only few but high-volume
senders to a multicast group, then this strategy is inefficient: Packets travel
in a register packet from the sender to the rendezvous point and then to the
recipients, which may be a detour adding delay and creating unnecessary traf-
fic if sender and receiver are close together but far apart from the rendezvous
point.

So in this situation the rendezvous point or the designated router of the
receiver may use source-specific join/prune messages to establish a separate
shortest path tree (SP-tree) or source-based forwarding tree for the source.
This shortest path tree has the designated router of the sender as the root,
so the routing is more efficient.

These SP-trees put an additional burden on the multicast routers involved,
however: Instead of keeping a single multicast routing entry (∗, G) for the
multicast group G, they now need to maintain a routing entry (S, G) for
every sender S to that multicast group. For this reason an SP-tree is only
established if the sender exceeds a configurable traffic threshold.

As usual these explanations ignore a number of fine points, but they should
suffice to understand how PIM-SM works even for debugging purposes. Be-
yond that RFC 2362 [39] is the definitive reference.

18.3.5 Source-specific Multicasts (SSM)

While the so-called any source multicasts (ASMs) we have used so far let a
listener subscribe to a multicast group, source-specific multicasts (SSMs) let a
listener subscribe to a multicast address from a specific source address. This
improves the efficiency of multicast routing in some cases.

Addresses with an ff3x:0:0:0:0:0::/96 prefix (with x being the scope
flag we already know) are treated specially with PIM-SM: When a listener

284 18 Multicasts Beyond the Link-local Scope

subscribes to such an address it must also supply the address of the sender it
wants to listen to. The combination (S, G) of the sender address and multicast
group is called a channel in SSM terminology. The listener uses MLDv2 to tell
the next designated router that it wants to receive such a channel—MLDv1
doesn’t support source address selection. Then the PIM-SM router sets up a
source-specific shortest path tree to the sender.

This approach has three major advantages: SSM addresses can be allo-
cated locally on the sender, SSMs avoid the switch from an RP-tree to an
SP-tree by using an SP-tree from the beginning, and SSMs don’t need a
rendezvous point, so source-specific multicasts scale well enough to be used
throughout the entire Internet.

The major disadvantage of source-specific multicasts is its need for MLDv2:
The IPv6 stacks of most Unixen simply don’t support it yet or the header files
are missing the necessary macro definitions. None of the Unixen presented
here support source-specific multicasts on end points.

Both mrd6 and pim6sd do however support source-specific multicasts.
Since they implement the router part of MLD, they should even work on
IPv6 implementations that don’t support SSM as end points.

If we had SSM-capable senders and receivers, then the mcjoin tool would
let us test the SSM routing: If we pass it a unicast address as a second
command-line parameter, then it will use this as the source address for source-
specific multicasts.

The official specifications for source-specific multicasts are spread over
various RFCs. To ease understanding of SSM, RFC 3569 [9] provides an
overview and refers to the other RFCs where necessary.

18.3.6 Embedded Rendezvous Point Addresses

Source-specific multicasts make rendezvous points unnecessary in the special
case of a single sender. If there are multiple senders, then we still need a
rendezvous point. RFC 3956 [98] uses a special range of multicast addresses
that embed the address of the rendezvous point within the multicast address.

The rendezvous points need a special type of address for this: Their inter-
face ID must have the form 0000:0000:0000:000i, where i is anything from 1
to f. A multicast address with embedded rendezvous point starts with ff7s,
where s identifies the scope as usual. Then follows a zero nibble, then a nibble
containing the last nibble i of the interface ID of the rendezvous point. The
next two nibbles contain the length of the network prefix, which then follows.
The remaining 32 bits contain the multicast group ID. For example, the mul-
ticast address ff75:0a40:2001:db8:fedc:1:42:678 contains the embedded
rendezvous point address 2001:db8:fedc:1::a. Figure 18.2 shows how the
rendezvous point address is extracted from such a multicast address.

18.4 Multicast Address Allocation 285

ff75:0a40:2001:0db8:fedc:0001:0042:0678

2001:0db8:fedc:0001:0000:0000:0000:000a

Fig. 18.2. A rendezvous point address embedded in a multicast address

Embedded rendezvous points addresses don’t need explicit support on the
sender or receiver side, only the routing daemons must support them; both
mrd6 and pim6sd do.

While squeezing a rendezvous point address into a multicast address like
this doesn’t look particularly aesthetic, doing so makes us independent of
bootstrap routers. Since the bootstrap protocol doesn’t scale but embedded
RP addresses do, using them makes multicast routing scale even if we want
to use it across the entire Internet.

18.4 Multicast Address Allocation

How do we choose and possibly announce the multicast addresses that we
want to use for our programs and services? So far we have simply used an
address with site-local scope and assumed that nobody else uses it. But there
are scenarios that simply forbid this approach.

If source-specific multicasts were widely available, then we could use them
to deal with the “Internet radio” scenario: A single sender distributing packets
via multicasts to a large group of sparsely distributed listeners could use an
SSM address which we could simply publish through the DNS.

But if we have few listeners and a large number of senders, possibly outside
our administrative domain, then things do get slightly more difficult. We can
use a multicast address with an embedded rendezvous point address; if we also
run the rendezvous point, then an address clash is effectively impossible as
long as we properly allocate all addresses used by our rendezvous point. The
same approach also supports the “Internet radio” scenario as long as SSM
functionality is still unavailable.

Even if we don’t want to embed a rendezvous point address in a multicast
address we use, for example if we use PIM-DM instead of PIM-SM, then
we have a range of multicast addresses at our own disposal: RFC 3306 [51]
allocates all addresses of the pattern ff3s:00nn:/24 in a way very similar to
the way we have embedded the rendezvous point in a multicast address: Here
s identifies the scope of the multicast address again and nn holds the number
of bits that contain the network prefix that “owns” the address. Next follows
the network prefix and finally the remaining bits contain a shorter than usual
multicast group ID.

286 18 Multicasts Beyond the Link-local Scope

Consider an example again: If our assigned global routing prefix is still
2001:db8:fedc::/48 and we need a global scope multicast address, then
we can use any address with the prefix ff3e:30:2001:db8:fedc::/80 for
our purposes. The difference between the embedded RP addresses and these
unicast-prefix-based multicast addresses is the second bit in the third nibble:
If it is set, then the address contains an embedded RP address, otherwise it
is just an address allocated to a site together with their unicast prefix.

This still leaves us with an unsolved problem: If we want to allocate ad-
dresses on a long-term basis, then we just assign them manually and possibly
store them in the DNS. But if a program needs a large number of dynami-
cally allocated multicast addresses, then we need to find a way to do that.
RFC 2730 [55] specifies the multicast address dynamic client allocation proto-
col (MADCAP). It works much like traditional DHCP, but allocates multicast
addresses. Unfortunately, implementations aren’t available yet.

18.5 Operational Issues

The most prominent reason why large-scale multicasting never became overly
popular in the IPv4 world is its complexity; since multicasts have been
retrofitted into an existing IPv4 base they were complex, tedious to han-
dle, didn’t scale properly and were often unfit for production-grade purposes.
With IPv6, multicasts have become significantly easier to use. Still, a number
of operations-related issues do exist.

Multicasts, and especially multicast routing at a large scale, are a complex
technology. It still requires experience and intimate knowledge of their inner
workings for reliable operations—and as usual, we have omitted a lot of the
finer details. And even then, a rendezvous point failover—one of the finer
details we have omitted—takes far longer than an OSPF route update.

Multicast routing is inherently resource-intensive on all multicast routers.
For every rendezvous point or SSM (S, G) pair the routers that forward this
traffic to a listener need to maintain state. There is no such thing as route
aggregation, so the multicast routing tables can become large enough to cause
serious problems. Implementing them in hardware seems to be much more
difficult than implementing unicast routing, though only time will tell if the
dedicated router hardware vendors will come up with hardware-based solu-
tions or not.

But IPv6 makes multicasting much easier than IPv4: We can embed RP
addresses in multicast addresses, which effectively solves the most critical scal-
ability issues. As soon as source-specific multicasts become generally available,
multicast routing will improve even more. Every allocated unicast prefix auto-
matically comes with a matching multicast range, so there is no need to obtain
multicast addresses from a RIR, Internet service provider or from IANA. Any-
casts let us set up rendezvous points in a redundant manner, making multicast
routing reliable enough for many production grade purposes.

18.6 Packet Filter Considerations 287

Beyond these rather fundamental considerations, two questions remain:
How do we arrange between PIM-SM and PIM-DM, and what is the best
approach to inter-domain multicast routing?

Using both PIM-SM and PIM-DM requires some sort of “border router”
that translates between the two. To my knowledge no such translator exists,
so we are effectively forced to choose between the two. In a BSD-only envi-
ronment that uses multicasts only within a reasonably small cloud, PIM-DM
may be a good move; certain high performance clusters might be a typical
example for such an environment. Beyond that, and as soon as Linux comes
in, PIM-SM is probably the best move since it avoids a later switch if we need
inter-domain multicast routing.

If we need inter-domain multicast routing, using embedded RP addresses
is the first thing to do; there are protocols to route between multicast routing
domains, but they aren’t widely available and don’t scale as well as embedded
RP addresses. If we want to avoid running a multicast routing daemon on all
routers, then we can use 6in6 or configured 6in4 tunnels to connect disjoint
multicast routing clouds with each other.

If performance becomes a problem, then it can be helpful to “short-circuit”
communications between some multicast routers by using tunnels between
them. That way we can reduce the size of the multicast routing tables of all
other routers between them.

If we run a multicast router as both bootstrap router and rendezvous
point, then recovery takes a long time if this router fails: First a new boot-
strap router must be chosen, then all rendezvous points must advertise their
service to the new bootstrap router, then the bootstrap router must flood its
bootstrap messages to the routing cloud and then all other multicast routers
must reconfigure their rendezvous points. To speed up recovery we should
always put candidate bootstrap routers and candidate rendezvous points on
different routers.

18.6 Packet Filter Considerations

There are three types of packets that relate to multicasts: ICMPv6 packets
for multicast listener discovery, PIM packets for PIM-SM and PIM-DM, and
the multicast packets themselves. We may need to deal with all of them in a
packet filter configuration.

Multicast listener discovery queries have an ICMPv6 type 130, a link-local
unicast address as the source address, and either a valid unicast or a multicast
address as the destination. MLDv1 listener reports have an ICMPv6 type 131,
either a link-local unicast address or the unspecified address as source and the
address of the multicast group to listen to as the destination address. MLDv2
listener done messages have the ICMPv6 type 132, a link-local unicast address
as source and ff02::2 as the destination. MLDv2 listener reports have the

288 18 Multicasts Beyond the Link-local Scope

ICMPv6 type 143, either a link-local unicast address or the unspecified address
as the source and ff02::16 as the destination address. All MLD packets have
a hop limit of 1.

PIM uses its own transport layer protocol number, 103 or 0x67, and its own
link-local multicast group ff02::d. Packets are either sent to this multicast
address or to the unicast address of the intended recipient; since the bootstrap
routers and rendezvous points may be located on a different subnet, routable
unicast addresses may be used for both the source and destination addresses
here.

Finally, of course we may want to filter the multicast packets themselves;
the configuration depends entirely on the particular requirements in the given
environment.

18.7 Advanced Topics and Further Reading

Multicast routing is an extremely complex subject well worth an entire book
of its own. So again we have skipped a number of advanced topics. Probably
most important are anycast rendezvous points, as described in RFC 3446 [82].
The multicast source discovery protocol (MSDP) defined in RFC 3618 [41]
may be relevant for inter-domain multicast routing if we can’t use embedded
rendezvous point addresses. As soon as MADCAP implementations as defined
in RFC 2730 [55] become available, they are worth a closer look.

For the definitive specifications on any multicast topic, check these RFCs:
MLD is defined in RFC 2710 [23], RFC 3590 [50] and RFC 3810 [36]. PIM-SM
and PIM-DM are specified in RFC 2362 [39] and RFC 3973 [1], respectively.
RFC 3569 [9] gives an overview of SSM and RFC 3956 [98] standardizes em-
bedded RP addresses. RFC 3306 [51] and RFC 3307 [49] cover allocation
guidelines for multicast addresses and unicast-prefix-based multicast addresses
in detail. If you want to use multicasts in your own programs, RFC 3678 [107]
documents the related socket API extensions.

Finally, multicasts and multicast routing are still areas of active research,
so if multicast routing is relevant to you, then watch out for new developments.

19

The Dynamic Host Configuration Protocol
(DHCPv6)

In the IPv4 world the most common means to assign dynamically allocated
IP addresses is the dynamic host configuration protocol (DHCP). A DHCP
server usually provides a client with a temporarily allocated address plus some
additional information like the addresses of the closest DNS servers.

Despite the fact that stateless autoconfiguration is widely considered the
canonical way to assign IPv6 addresses, there is also an IPv6 variant of DHCP
called DHCPv6 defined in RFC 3315 [35]. Like DHCP, DHCPv6 also serves
two purposes: It provides an alternate means to assign IPv6 addresses to
clients and it disseminates general information about the network and its
local facilities.

19.1 Installation

As of today, not all Unixen bring DHCPv6 support with them. Since autocon-
figuration is generally superior to DHCP with respect to address management,
the need for DHCPv6 isn’t that pressing. But then, distributing general net-
work information with DHCPv6 does have its merits, so in a number of cases
it is worth the trouble to install even if this involves building it from sources
ourselves.

Debian Sarge There is no DHCPv6 support included in the Debian dis-
tribution, but there are at least two DHCPv6 implementations available for
Linux. According to the documentation, Dibbler seems to be the most usable.
Its sources are available at http://klub.com.pl/dhcpv6. The latest release
there is 0.4.1; it compiles without problems. (There are also Debian packages
available, but they don’t install on Sarge.) Running make install installs
the three daemons dibbler-client, dibbler-server and dibbler-relay.

290 19 The Dynamic Host Configuration Protocol (DHCPv6)

Running make install also sets up some non-empty confi-
guration files for the three daemons; these files are named
/etc/dibbler/{client,relay,server}.conf and contain some
randomly chosen addresses. Rename these files right away to avoid
trouble starting daemons with broken configuration data later on.

Next we need to set up our own boot script. A very rudimentary version
looks like this:

/etc/init.d/dibbler

#! /bin/bash

for dmn in client server relay

do

[-e /etc/dibbler/$dmn.conf] && /usr/local/sbin/dibbler-$dmn $1

done

sleep 3 # Wait for daemon to get data or shut down

This script will start and stop all daemons that have a matching configuration
file in /etc/dibbler: Invoking the daemons with either start or stop as the
command line parameter will start or stop them, respectively. We should then
set the appropriate link in /etc/rc2.d/ to the script; if we run the server or
relay, then it should start late in the boot process, otherwise we should run it
near the network initialization.

FreeBSD 6.1 The dhcp6 package contains the client dhcp6c, server dhcp6s
and relay dhcp6relay daemons, so we need to install the same package on all
DHCPv6 machines.

The variables dhcp6c_enable, dhcp6relay_enable and dhcp6s_enable

in /etc/rc.conf control which daemon to start. We must set the appropriate
variable to YES to start the daemon we want.

Additionally the dhcp6c and dhcp6s programs need to know on which
interface to run. We pass the interface name in the dhcp6c_flags and
dhcp6s_flags environment variables. So the boot configuration for a client
looks like

/etc/rc.conf

dhcp6c_enable=YES

dhcp6c_flags="lnc0"

and, quite similarly, the server boot configuration is

/etc/rc.conf

dhcp6s_enable=YES

dhcp6s_flags="lnc0"

Finally, due to the way that the client and server daemons work, we need to
set up a shared secret in a file /usr/local/etc/dhcp6[cs]ctlkey. It must
be a random base64 encoded string. We can generate the file using openssl

like

19.2 Stateless DHCPv6 291

openssl rand -base64 64 >/usr/local/etc/dhcp6cctlkey ‖ Client
openssl rand -base64 64 >/usr/local/etc/dhcp6sctlkey ‖ Server

for the client and accordingly for the server, too.

Solaris 10 So far there is no support for DHCPv6 available. 123

At this point our DHCP daemons are ready to run. But we still need to
tell the server which information to distribute and the client how to use it.
That turns out to be more work than expected.

19.2 Stateless DHCPv6

We start with the most simple, and in many cases most important, aspect of
DHCPv6: the stateless distribution of various site-wide information, especially
the DNS resolver configuration.

The subset of DHCPv6 that doesn’t deal with address allocation is often
referred to as stateless DHCPv6, because the DHCP server doesn’t need to
keep track of the addresses assigned to clients. It is perfectly feasible to set up
multiple independent DHCP servers within a network to achieve a virtually
unlimited degree of reliability. Except for the need for relay routers, which
we’ll take a look at below, stateless DHCPv6 avoids all of the problems we
have considered in section 4.3.1 when we introduced autoconfiguration as a
successor of DHCPv4 for address allocation.

19.2.1 The First Step: Resolver Configuration

First we tell the DHCP server the IPv6 addresses of the name servers and the
local domain search list. To show how to add multiple name servers and do-
main names we assume that we have two name servers at 2001:db8:fedc::1
and 2001:db8:fedc::2 and use the domains example.com and example.net

in the domain search list.

Debian Sarge with Dibbler In /etc/dibbler/server.conf we set up
our configuration according to this pattern:

/etc/dibbler/server.conf

stateless

iface eth0 {

option dns-server 2001:db8:fedc::1, 2001:db8:fedc::2

option domain example.com, example.net

}

With this we first tell the server to offer only stateless configuration data.
Then we configure the data it sends out; we must do so for every interface
individually. Finally we must restart the daemon.

292 19 The Dynamic Host Configuration Protocol (DHCPv6)

FreeBSD 6.1 We create a configuration file /usr/local/etc/dhcp6s.conf
for the DHCP daemon with the lines

/usr/local/etc/dhcp6s.conf

option domain-name-servers 2001:db8:fedc::1;

option domain-name-servers 2001:db8:fedc::2;

option domain-name "example.com";

option domain-name "example.net";

and then restart the dhcp6s server either by hand or through its boot script.
124

Next we check that our client can actually reach the server and obtain its
data.

Debian Sarge with Dibbler There is no way to do a “dry run” that shows
the data we receive.

FreeBSD 6.1 The dhcp6c program has an option -i to find a server and
query for its stateless data. Assuming that our client uses interface lnc0 for
its network connection, we can check with

dhcp6c -i lnc0

nameserver[0] 2001:db8:fedc::1

nameserver[1] 2001:db8:fedc::2

Domain search list[0] example.com.

Domain search list[1] example.net.

that the client actually receives data from the server. Before we run this
command we must first stop all running dhcp6c daemons, otherwise the two
processes will attempt to use the same port number on the client. 125

Finally we need to tell our client what to do with the data it receives.
The implementations differ significantly in the way they handle the client-
side configuration.

Debian Sarge with Dibbler We just tell the Dibbler client what data we
are actually interested in. The configuration

/etc/dibbler/client.conf

stateless

iface eth0 {

option dns-server

option domain

}

in /etc/dibbler/client.conf tells the client that we are only using stateless
configuration data in general and only want to obtain the DNS servers and
domain name search list from interface eth0.

The Dibbler client knows what to do with the received information and
automatically updates the resolver configuration. When the client shuts down
it even restores /etc/resolv.conf to its old contents.

19.2 Stateless DHCPv6 293

FreeBSD 6.1 Different than Dibbler, the dhcp6c follows an approach more
similar to that of the ISC DHCP implementation for IPv4: It just passes the
data it finds to a shell script and lets the script deal with everything else.
Different than ISC DHCP, the dhcp6 package doesn’t ship with a pre-built
script; it is left to us to set up a script according to our needs.

First we tell the client what information we are interested in. We need an
entry like

/usr/local/etc/dhcp6c.conf

interface lnc0 {

information-only;

request domain-name-servers, domain-name;

script "/usr/local/etc/dhcp6c-script";

};

in /usr/local/etc/dhcp6c.conf to tell the client that we only want stateless
information and that we need the DNS server addresses and the domain name
search list from the server. The script statement tells the client where to
find the shell script that actually configures the system; it must refer to an
executable file that is owned by the same user as the one that the dhcp6c is
running as.

Next we need the shell script. A look at the ISC DHCP script immediately
shows that a proper script isn’t trivial to write. We limit ourselves to a
minimum and just rewrite the /etc/resolv.conf:

/usr/local/etc/dhcp6c-script

#! /bin/sh

mv /etc/resolv.conf /etc/resolv.conf.old

(echo "# Configuration created by $0"

echo "# on ‘date‘"

echo "$new_domain_name_servers" | tr ’ ’ ’\n’ \

| sed ’/^ */d;s/^/nameserver /’

echo "search $new_domain_name"

) >/etc/resolv.conf

126

Configuring the resolver is probably the most pressing reason to use
DHCPv6, and fortunately it works without any major problems. Other con-
figuration data may be more troublesome, as we see next.

19.2.2 Adding More Stateless Data

The second important configuration data that we may want to distribute with
DHCPv6 is the address of the local time server. Since short round-trip times
and low latency improve the precision of NTP quite significantly, using a close
time server is sometimes important.

294 19 The Dynamic Host Configuration Protocol (DHCPv6)

Unfortunately, support for NTP was only specified in RFC 4075 [77] in
May 2005 and hasn’t found its way into all implementations yet.

Debian Sarge with Dibbler NTP support according to RFC 4075 is avail-
able.

FreeBSD 6.1 The NTP support in the dhcp6 package is based on a draft
of the standard and by default not compiled in. 127

Surprisingly enough, the first service that DHCPv6 actually supported
was not DNS but SIP, the session initiation protocol used for voice over IP
signalling. RFC 3319 [100] specifies how to distribute information about the
local SIP and DNS servers with DHCPv6. All implementations support it.

Additionally, RFC 3898 [76] defines the distribution of some information
about the local network information system (NIS and NIS+) infrastructure.

Debian Sarge with Dibbler The NIS/NIS+ support is available out of
the box.

FreeBSD 6.1 NIS/NIS+ is not supported. 128

In short, some work still needs to be done before distributing more than
the resolver configuration with DHCPv6 is generally feasible.

19.3 Address Management with DHCPv6

Despite the fact that stateless address autoconfiguration provides such a su-
perior way to assign IPv6 addresses to hosts, the DHCPv6 standard still
supports the dynamic allocation of addresses through a server.

The managed flag in router advertisements explicitly notifies a client of
the existence of an address managing DHCPv6 server in the subnet. Unix
clients don’t use this flag, however.

Not all implementations support this feature, at least not in the way that
RFC 3315 expects:

Debian Sarge with Dibbler It is possible to set up address pools for dy-
namic allocation.

FreeBSD 6.1 There is no dynamic allocation available, but it is possible to
assign fixed addresses to fixed clients. 129

In general, address management based on DHCPv6 is rather unexciting in
virtually all practical cases.

19.4 DHCPv6 Across Subnet Borders 295

19.4 DHCPv6 Across Subnet Borders

DHCP was originally designed as a service for clients that don’t have a
routable address yet. As a consequence, DHCP servers need to be connected
to the same subnet as their clients. To minimize the need for DHCP servers,
it is possible to connect DHCP relays to all subnets with DHCP clients; these
relays forward the DHCP requests to the actual servers using routable ad-
dresses.

Unfortunately, even if a client has already obtained its routable address
and default route through autoconfiguration, there is still no way for it to
contact a DHCP server in another subnet without the need for a relay.

So we now take a look at how to set up a DHCP relay. There are two
ways a relay can find a server: We can tell it the routable IPv6 address of a
server or we can use a site-local scoped multicast address.

With IPv4, using DHCP relays was extremely useful because it limited
the number of nodes that needed to keep track of the assigned address leases;
this was essential to enable dedicated router hardware without hard disks to
provide DHCP services in the subnets that they connect to. With IPv6 and
stateless DHCPv6 the only advantage of DHCP relays is the fact that the
configuration data doesn’t need to be replicated to every single subnet.

Still, DHCPv6 does support relays. So we might as well take a look at
how to set them up.

19.4.1 Setting Up a DHCP Relay

First we configure the relay explicitly with the unicast address of the server.
While this implies an additional configuration effort on all relays, it doesn’t
depend on a multicast routing infrastructure.

Debian Sarge with Dibbler We can set up a relay using a configuration
file /etc/dibbler/relay.conf like

/etc/dibbler/relay.conf

iface eth0 {

server multicast no

server unicast 2001:db8:fedc::2

client multicast yes

interface-id 1234

}

to run a relay on interface eth0. The relay won’t try to reach the server on a
multicast address but only on its unicast address 2001:db8:fedc::2. It accepts
client requests via multicasts. The interface-id defines a numeric value
that serves to disambiguate multiple servers. This value must be configured
the same on the server and relay.

296 19 The Dynamic Host Configuration Protocol (DHCPv6)

Additionally we must update the server configuration to support relayed
requests. We add three lines to the configuration for the interface we listen
to in /etc/dibbler/server.conf like

/etc/dibbler/server.conf

iface eth0 {

relay eth0

interface-id 1234

unicast 2001:db8:fedc::2

[. . .]
}

The relay option tells the daemon that we are willing to handle relayed
requests on this interface. The interface-id option must match the confi-
guration of the relay. Finally we must also specify the unicast address that
we accept relayed requests on.

FreeBSD 6.1 The dhcp6relay daemon is only configured through com-
mand line arguments. We can pass it an arbitrary number of interface names
to listen to. Additionally, we tell it where to find its DHCPv6 server using
the option -s. For a permanent configuration we can simply set the variable
dhcp6relay_flags in /etc/rc.conf accordingly:

/etc/rc.conf

dhcp6relay_enable=YES

dhcp6relay_flags="-s 2001:db8:fedc::2 lnc0"

Servers will automatically serve requests from relays. 130

19.4.2 Multicasts from Relay to Server

Instead of configuring the relays with the address of the server we can use
routed multicasts from the relays to the servers using the site-local multicast
address ff05::1:3. This approach either requires the relays to have an in-
terface in the same subnet as the servers or a multicast routing setup, but it
doesn’t need the relays to know the address of the server and lets us set up
redundant servers.

Configuring a relay that uses routed multicasts to the server is actually
simpler than configuring it with the unicast address of a server.

Debian Sarge with Dibbler At this time the Dibbler relay has a major
limitation: It forwards requests as multicasts with a hop limit of 1, thereby
preventing them from being routed to the server. If we equip the relay with
multiple interfaces, one connected to the subnet with the clients and the other
to the subnet with the servers, then we can still use the relays. If eth0 connects
to the client subnet and eth1 to the server subnet, then we can configure the
relay as

19.6 Conceptual Security Aspects 297

/etc/dibbler/relay.conf

iface eth0 {

client multicast yes

interface-id 1234

}

iface eth1 {

server multicast yes

}

The server needs to be configured as with an explicit relay except that the
unicast statement may be missing.

FreeBSD 6.1 If the relay node has multiple interfaces, then we need to
start the relay daemon with the additional option -r to specify the interface
through which we want to send the multicasts to the server. If we only run
the daemon on a single interface anyway, then we can omit this additional
option.

On the server we don’t need to touch the configuration at all. 131

The need for a relay is a historic legacy; with IPv4, where DHCP is primar-
ily used to assign addresses, a client doesn’t yet have the necessary routable
address to reach a DHCP server in another subnet. With IPv6, multicast
routing and stateless DHCPv6 it is possible to make a client use the relay-
server protocol to query the server directly and do away with the relays.
Implementations don’t support this, however.

19.5 Interoperation Problems

There exist at least two interoperation problems between Dibbler and the
BSD dhcp6 package that are worth knowing about.

Dibbler considers the “interface ID” DHCP option mandatory for commu-
nication between relays and servers while the BSD relay doesn’t use it at all.
In consequence, a Dibbler server and BSD relay won’t interoperate.

The Dibbler server only provides the data that the client requests while
the BSD server sends out all the data it has. The BSD client won’t explicitly
ask the server for the data it needs but expects the server to send all the data
it has. In consequence, a BSD client won’t work with a Dibbler server.

To avoid these problems it is easiest either to use only a single implemen-
tation across all networks or use the BSD implementation on all relays and
servers and whatever is available on the clients.

19.6 Conceptual Security Aspects

By its very concept, DHCP is an inherently insecure protocol: It provides a
trusting client with some extremely security-critical information.

298 19 The Dynamic Host Configuration Protocol (DHCPv6)

According to the standard, DHCPv6 supports some authentication feature
based on shared secrets between the client and server. Since these need to be
distributed to the client, their use is questionable—if we need to touch the
client, then we might as well install the configuration data statically. It is
obviously both safer and more flexible to update files like /etc/resolv.conf

or /etc/ntp.conf using tools like SSH and Rsync or Rdist. Only in the case
of a node that frequently changes its network connectivity does DHCP prove
useful. But in that case handling the shared secret becomes so much of a
burden that it is effectively useless for practical purposes.

Debian Sarge with Dibbler There is no support for authentication. 132

In consequence, DHCP can’t be used in security-critical environments.
Providing “guest” subnets with a DHCP server may be quite useful, but
“guest” nodes connecting to such a subnet must then be aware that the in-
formation obtained by DHCP is inherently untrustworthy.

19.7 Packet Filter Considerations

Clients listen on UDP port 546 while relays and servers listen on port 547.
Clients use their link-local unicast address to contact the server or relay on the
link-local all DHCP relay agents and servers multicast address ff02::1:2.
Relays contact the server on the site-local all DHCP servers multicast address
ff05::1:3.

20

Bridging the DNS Gap

Stateless autoconfiguration offers a reliable and highly automatic way to as-
sign IPv6 hosts their addresses, avoiding all of the problems that arise from
traditional DHCP-based address management. But how do these addresses
find their way into the DNS?

20.1 From Autoconfiguration to the DNS

When I first got seriously involved with IPv6, this question stumped me.
As a Unixer I expected to register all nodes with the DNS, if only to make
them accessible to remote administration. But if autoconfiguration changes
addresses on the fly, then how can the DNS be kept in sync with the addresses
allocated by autoconfiguration?

First I assumed that I missed some obvious but radically un-IPv4-ish so-
lution, but I couldn’t find one anywhere. I hacked up some primitive scripts
to deal with my immediate needs and deferred the problem.

When I finally did some more research on the issue I found out that no,
apparently nobody had taken care of it properly. People got interested in the
scripts, so I spent some more work on them. At least one of them is still “lab
grade” software, but still they are quite useful to maintain the DNS entries
in an IPv6 environment.

20.2 Solution Strategies

I asked around for a “production grade” solution but couldn’t find any. Some
suggestions that came up were simply impractical, others focused on protocol
standards rather than existing implementations.

300 20 Bridging the DNS Gap

20.2.1 “But Only Servers Need DNS Entries”

One of the first reactions was: “Why do you want to register all machines
with the DNS?” While this question is perfectly reasonable if the environment
consists of large numbers of Microsoft Windows desktop machines and a few
servers, in a Unixoid data center with lots of servers, or a Unix environment
with a large number of workstations that are remotely operated using SSH,
the answer to this question is obvious: Not putting all nodes into the DNS
makes them remotely inaccessible. From a security standpoint this may be
desirable in some cases, but as a general strategy this approach doesn’t work.

Worst case scenarios that require large numbers of nodes to be tracked
in the DNS are web hosters offering root servers to their customers and high
performance cluster environments using large numbers of cheap machines.
But even the average medium-sized data center has enough servers that need
DNS entries to make this approach infeasible.

20.2.2 Manual DNS Entries

Another reply I received was “How many machines do you have that you can’t
maintain the DNS entries manually?”

In my case this question led back to the scenario with the large data
center. Even in a small to medium size data center with a few hundred servers,
maintaining all addresses manually involves a lot of tedious, error-prone work.

With a bit of scripting know-how, or some experience with a decent file
editor, a lot of scenarios are easy to handle. But for the initial entries we
need to collect all interface IDs, which is infeasible if machines change a lot.
Environments that offer virtual root servers based on virtualization software
like VMware are an extreme example of this.

20.2.3 The DHCP Non-solution

Another suggestion was to use DHCP for address assignment and let the
DHCP server update the name server. Besides the fact that DHCPv6 imple-
mentations so far don’t generally support DNS updates, this approach has
a number of flaws, depending on the way that the DHCP server matches IP
addresses with DNS names.

DHCP servers that do DNS updates operate in one of three modes: They
use the name that the client provides, they assign names to addresses no
matter which client is currently using an address or they look the name up in
a manually maintained table of (link-layer address, IP address, DNS name)
triples for every client.

The first approach is unacceptable unless the client authenticates itself;
even IPv4 DHCP implementations don’t generally support this. Otherwise
any client claiming to be www.example.com might mimic as our web server.

20.3 A Preliminary Implementation 301

Tying the DNS name to the address doesn’t help either: If the IP ad-
dress 192.168.42.42 and the DNS name desktop42-42.example.com are
statically associated but the clients using the address change, then we simply
don’t know how to reach Mr Turing’s desktop computer when we need to.

Maintaining link-layer addresses manually does what we need, but then
we might as well maintain them in the DNS, since autoconfiguration maps the
link-layer address to the interface ID. This is tedious, error-prone and exactly
what we want to avoid.

20.2.4 Dynamic DNS (DDNS) Updates

The more helpful replies I received showed that my scripts were heading the
right way: All the pieces were there, but nobody had put them all together
yet.

With autoconfiguration only the host itself knows its current addresses,
so the host needs to make sure that its DNS entries are correct. If they
are incorrect, then the host must update them using dynamic DNS (DDNS)
update messages. To deal with renumberings, the host must monitor its ad-
dresses so it can update its DNS entry after a renumbering. To make DNS
updates secure we need to use the DNS security (DNSSEC) extensions to
authenticate the updates. Since authentication keys are always tied to the
DNS record name, this only works for forward zone entries. Reverse zones
can’t be authenticated by the host, so we need a different strategy there.

The solution works like this: When we install a new host, then we create
a so-called transaction signature (TSIG) on the name server; this “signature”
is actually just a shared secret between the name server and client. On the
name server side we tie it to the host’s DNS name. We copy the “signature”
to the host and run a program there that checks if its DNS entry is correct and
if necessary uses the “signature” to send a DNS update to the name server.
The name server periodically updates the reverse zones from the data it finds
in the forward zones to keep both in sync.

The approach in itself and the implementation so far both have a number
of inherent problems that we’ll investigate in section 20.4. But until now there
is no better solution available.

20.3 A Preliminary Implementation

The implementation consists of three separate programs called maketsigkey,
nsautoupdate and syncrevzone. All three are available from my home page
at http://www.benedikt-stockebrand.net/.

302 20 Bridging the DNS Gap

20.3.1 Configuring BIND for Dynamic Updates

First we have to make our name server accept authenticated dynamic updates:
We must set up our zone files and the directory containing them so that the
files can be updated dynamically and configure the named daemon to read the
TSIG keys we generate.

The zone files themselves as well as the directory with the zone files must
be writable to the user that the named daemon runs as. The configuration in
appendix A uses /var/named/zonedata for the zone files so that the /etc/

directory can be mounted read-only or managed using configuration manage-
ment tools.

Next we create an empty file /var/named/tsig.keys.conf; later on the
maketsigkey script will store the shared secrets in it. The script stores the
key files for the clients in /var/named/keys/, so we must also create this
directory.

To make the named daemon use the keys, we use an include statement in
its configuration to read the tsig.keys.conf file. If we run named without a
chroot environment, then we need a line

named.conf

include "/var/named/tsig.keys.conf";

in our named.conf; if we use the chroot feature and run named from within
/var/named, then the line should read

named.conf

include "/tsig.keys.conf";

instead. If we want to run named from a different chroot directory, then we
must adapt the maketsigkey script to write the file to the chroot environ-
ment.

Additionally we need to allow dynamic updates for our forward zones. For
our purposes the most restrictive configuration we may want to use looks like
this:

named.conf

zone "example.com" {

type master;

file "example.com.fwd";

update-policy { grant *.example.com. self example.com. AAAA; };

};

The update-policy statement lets every client with a TSIG key issued to a
DNS name in “.example.com” update its own AAAA records but nothing
else.

At this point it is normally a good idea to restart the name server and
ensure that the changes to named.conf work without any obvious problems.

20.3 A Preliminary Implementation 303

20.3.2 Creating and Installing TSIG Keys

Next we create TSIG keys for our clients. The dnssec-keygen program must
be installed on our name server; it usually ships with either the full BIND
distribution or a separate “BIND utilities” package, so it should already be
there; if not, we must install it. Then we install the maketsigkey program
from my web site on the name server.

Now we run maketsigkey. As arguments it needs the DNS names that we
want to create TSIG keys for. For example,

maketsigkey www.example.com. ftp.example.com ntp.example.com

Kwww.example.com.+157+09202

Kftp.example.com.+157+50018

Kntp.example.com.+157+04719

creates three TSIG keys, one for www.example.com, one for ftp.example.com
and one for ntp.example.com; the trailing period is optional here. The output
shows the base names of the key files created; they always start with an
uppercase “K” followed by the fully qualified domain name, a plus sign, a
numeric code for the authentication algorithm, another plus sign and a final
checksum for the randomly chosen secret key. Accordingly, we can find the
key files in /var/named/keys:

ls /var/named/keys

Kftp.example.com.+157+50018.key

Kftp.example.com.+157+50018.private

Kntp.example.com.+157+04719.key

Kntp.example.com.+157+04719.private

Kwww.example.com.+157+09202.key

Kwww.example.com.+157+09202.private

Additionally, maketsigkey extracts the keys from the key files and writes
them to the /var/named/tsig.keys.conf file:

/var/named/tsig.keys.conf

[. . .]
key ftp.example.com.

{ algorithm hmac-md5; secret "KB9GfwCxiKOA7h5hXNbJrA==";};

key ntp.example.com.

{ algorithm hmac-md5; secret "3sRrRinSdbri1AqZ1AthwA==";};

key www.example.com.

{ algorithm hmac-md5; secret "Q8Axaax94ehEikCwR65N3A==";};

Finally, maketsigkey signals the named daemon to re-read its configuration,
including the updated tsig.keys.conf file.

Now the name server is ready to receive authenticated DNS updates for
the three example domain names.

304 20 Bridging the DNS Gap

20.3.3 Updating the DNS Forward Zone Records

On the clients we need to install the dig and nsupdate binaries from the
BIND 9 distribution; nsautoupdate uses them to communicate with the name
server.

Debian Sarge The dnsutils package contains everything we need.

FreeBSD 6.1 The programs are part of the core system.

Solaris 10 Unfortunately these programs are only distributed as part of the
BIND 9 server package, so we need to install the entire SUNWbind package
from the distribution media. 133

Next we install the nsautoupdate package from my web site. It is a fairly
simple shell script and should install without any problems.

To avoid replay attacks, authenticated DNS updates rely on proper time
synchronization. If we don’t use NTP yet, then we must ensure that the
system clocks on the DNS server and client run in sync approximately within
a minute.

Next we need to configure the nsautoupdate script. To do so we choose
an interface and a scope, either global or site for site-local. The script will
check this interface and the given scope to pick the address that it sends to
the DNS server. If we use interface eth0 and global scope, then we create
a directory /etc/tsig/eth0.global/. Into that directory we copy both the
*.key and *.private file from the TSIG key we have just created on the
DNS server.

Finally we run nsautoupdate. If everything works as expected, then it
will terminate without any output. To ensure that the update was successful
we should finally dig for the DNS name we have just added.

Note that nsautoupdate adds only one address to the DNS. This is prob-
ably not the best strategy, but it keeps the script simple.

20.3.4 Maintaining DNS Reverse Zones

Unfortunately, nsautoupdate can’t possibly update the reverse DNS entries;
to do so it would need a TSIG key that authenticated the IP address in
its pseudo DNS name format. So we need a different strategy for the reverse
zones. In an administrative domain that controls both the forward and reverse
zones, we can retrieve the forward zone data and use it to update the reverse
zones.

The syncrevzone program uses this approach. It can be installed on an
arbitrary node, but usually it runs on the name server. To use syncrevzone,
we need to create a special TSIG key that we grant permission to update all
our reverse zones. By convention we call this key master, so we create it with
the command

20.3 A Preliminary Implementation 305

maketsigkey master.

on our name server. Next we grant this key permission to update our reverse
zones. In our named.conf we augment the zone declarations of our reverse
zones with an update-policy statement like

named.conf

zone "c.d.e.f.0.b.d.0.1.0.0.2.ip6.arpa." {

type master;

file "2001.db8.fedc.rev";

update-policy {

grant master.

wildcard *.c.d.e.f.8.b.d.0.1.0.0.2.ip6.arpa. PTR;

};

};

Analogously we need to update the matching ip6.int zone.

Now we run the syncrevzone command. We need to pass it the TSIG
key and the names of the forward and reverse zones to synchronize. We
must specify the reverse zones as a regular address prefix; syncrevzone will
then update both the ip6.arpa and ip6.int pseudo domains. Additionally,
syncrevzone searches /var/named/keys for the given key name if we don’t
give it a file name. So if we run

syncrevzone -k master example.com 2001:db8:fedc::/48

then we should afterwards find our reverse zones updated as expected.

� Make sure that everything worked by querying the name server for
the data in the reverse zones. The command to do this without any
unnecessary output from dig is

dig +noall +answer c.d.e.f.8.b.d.0.1.0.0.2.ip6.arpa. axfr

(and accordingly for ip6.int). The output must match the data in
the forward zone.

20.3.5 Security Considerations

Considering the importance of the DNS for network operations it is obvious
that it is generally very security sensitive. So how do dynamic updates and
the tools we’ve seen affect security?

Generally speaking, enabling dynamic DNS updates doesn’t improve the
security of the DNS. Authentication needs some CPU time, so allowing DNS
updates introduces an increased risk of denial-of-service attacks. But then,
the DNS protocol in itself isn’t particularly secure; without it, clients may
be unable to find the servers they want to connect to, but all application-
layer protocols that rely on the DNS to “authenticate” a peer are inherently

306 20 Bridging the DNS Gap

insecure. So the potential security impact of dynamic DNS updates depends
on the particular environment.

TSIG authentication uses system clocks to prevent replay attacks. This
approach has a major drawback: It makes the NTP service extremely security-
critical. The time window for replay attacks, even if the NTP service wasn’t
manipulated, is several minutes, which may be sufficient for some automated
attacks.

Finally, the TSIG “certificates” and the tsig.keys.conf file must be pro-
tected properly. If regular users have accounts to the name server, then the
/var/named/keys/ directory and the tsig.keys.conf files must be handled
with particular care.

20.4 Operational Issues

Security considerations aside, are these tools fit for use in a production envi-
ronment? Not in an unsupervised way. But if we just consider them tools to
make the DNS administration less tedious, then they can be quite useful even
in their current state.

The syncrevzone program is reasonably mature; its messages aren’t the
most elaborate and it still relies on dig and nsupdate as external programs,
but otherwise it does its job. The maketsigkey script is fairly uncritical
because it doesn’t run unsupervised. The nsautoupdate script is immature
in several ways: It uses the output of ifconfig to pick an address. It only
adds a single address and depending on the output of ifconfig the choice
may be suboptimal. It might be used unsupervised in a test environment, but
definitely not in a production environment.

Running syncrevzone through cron is possible. Even if something goes
seriously wrong, it only affects the reverse zones; syncrevzone won’t touch
the forward zones, so even in the worst case we can still rely on them to clean
up the mess remotely.

Using nsautoupdate via cron is dangerous: It may store useless addresses
in the DNS so that we can’t reach the node involved remotely and during a net-
work renumbering event with a large number of nodes the many concurrent
nsautoupdate invocations may bring the name server down. In a produc-
tion environment nsautoupdate should only be run manually. This simplifies
the DNS management quite significantly, especially if networks change or ma-
chines move often, while it still minimizes the adverse effects of a malfunction.

Using dynamic updates introduces another problem: We can’t manually
update the DNS data by editing the zone files and then restarting the name
server; if we did, we would lose all dynamic changes that came in meanwhile.
So if we use dynamic updates, then we need to use them for all zone data
administration, using a command like nsupdate or similar.

20.5 Future Work 307

For this purpose I habitually generate another TSIG key called admin with
maketsigkey and extend the update-policy statement for all zones with an
additional line like

named.conf

zone "example.com" {

[. . .]
update-policy {

[. . .]
grant admin. wildcard *.example.com. ANY; ‖ Allow updates

};

};

Afterwards I use the command

nsupdate -k /var/named/keys/Kadmin.+157+12345.key

to update all the DNS data in my zones; it takes a bit of practice to get used
to this, but it works quite well.

20.5 Future Work

It should be obvious by now that the tools we have introduced in this chapter
are a long way from a production grade solution to the DNS gap problem.
Some additional work is necessary here.

The limitations of nsautoupdate are an obvious first candidate for im-
provements. The script should take into consideration all the interfaces and
addresses in a more intelligent manner, maybe implementing an address se-
lection algorithm similar to those we have seen in section 16.4 for source and
destination addresses in applications. Additionally it should delay updates in
a way that prevents load peaks at the name server during a network renum-
bering event and possibly allow for “batch” updates at the name server.

A more rigorous approach might replace the TSIG based upgrades with
something different, like an SSL/TLS based update protocol. That would
solve the replay attack issues and the dependency on time synchronization
between the DNS clients and servers. Additionally it might offer updates
beyond the DNS, like properly authenticated changes to various address based
access control or firewall configurations—somewhat like universal plug’n’play
(UPnP) done properly.

Even more fundamental problems are inherent to the DNS protocol. The
DNS by design assumes that the association between nodes and their addresses
is mostly static. It provides an efficient and scalable way to publish these
associations, making heavy use of caching. With autoconfiguration, nodes
may change their addresses quite frequently, for example if they move between
different WLAN subnets, so the association between nodes and addresses
becomes more or less volatile. At this time we can only configure the DNS

308 20 Bridging the DNS Gap

records with a short time to live if we want to ensure that outdated data in the
DNS caches expires quickly, but that impacts the performance and scalability
of the entire DNS.

In short, the DNS has some fundamental problems with the way it handles
IPv6 addresses, so its entire architecture may experience significant changes
in the future.

Part V

New Functionalities

21

IP Security (IPsec)

Of the new functionalities that IPv6 introduced to the TCP/IP stack, IPsec
is best known, “backported” to IPv4 without loss of functionality and most
widely implemented.

21.1 Basic Concepts

The ideas behind IPsec are quite straightforward: Additional option headers
provide for the authentication and encryption of IP packets. In practice,
IPsec itself is dauntingly complex. Implementations follow suit, ranging from
“mostly undocumented” to “configuration nightmare” to “missing essential
parts”.

So we just take a look at the concepts and its operational implications but
don’t even attempt to set up a working installation.

21.1.1 Authentication and Encryption

IPsec supports two independent features: The authentication of a packet’s
source and the encryption of its contents. Both features can be used indepen-
dently.

An authenticated packet contains an authentication header (AH) which
certifies that the packet originated from the source address shown in the
base header. Authentication uses a shared secret between the communica-
tion peers. The sender computes a checksum, or hash, over the shared secret,
the relevant parts of the IP headers and the IP payload and stores it in the au-
thentication header. The receiver recomputes the checksum and compares its
result with the checksum found in the authentication header. If they match,
then the receiver knows that the sender also holds a copy of the shared secret.

Encryption also uses an option header, called encapsulating security pay-
load (ESP). It also uses a pre-installed shared secret between the peers. The

312 21 IP Security (IPsec)

sender inserts an ESP header into an IP packet and encrypts all data follow-
ing that header. The receiver finds the ESP header and then decrypts all the
following data before it processes the packet.

21.1.2 Transport and Tunnel Mode

So far we have assumed that we want end-to-end encryption and authentica-
tion. But in section 21.2.1 we’ll see that end-to-end encryption is sometimes
a problem rather than a solution. To work around this and to use IPsec
for virtual private networks (VPN s), IPsec also works together with IP-in-IP
encapsulation.

End-to-end encryption is called transport mode while the combination of
IPsec and encapsulation is called tunnel mode. Figure 21.1 shows the differ-

Plain

Packet
IPv6

Header
Payload

Transport

Mode

Packet

IPv6
Header

AH
Header

ESP
Header

Payload

Tunnel

Mode

Packet

Outer
IPv6

Header

AH
Header

ESP
Header

Inner
IPv6

Header
Payload

Fig. 21.1. Plain IPv6 packet and IPsec packets

ences between the packets. Things get slightly more complex if more option
headers get involved; for our purposes it suffices to know that those option
headers that are read by routers are placed before the IPsec headers and those
that are only used by the final recipient are placed after. Everything that fol-
lows the ESP header is encrypted. Additionally, either the AH or ESP header
may be missing.

21.1.3 Policy and Key Management Within the Kernel

When setting up IPsec, one of the first things we need to do is to decide which
nodes will use which IPsec features between each other. The kernel maintains
a security policy database (SPD) to decide which IPsec features to apply to
outbound packets and which to require from inbound ones.

The SPD is quite similar to a packet filter configuration except that it
doesn’t filter packets that are forwarded. It is usually quite static and manu-
ally configured.

21.1 Basic Concepts 313

The kernel also stores all the shared secrets in a security association
database (SAD or sometimes SADB). The SAD contains a set of security
associations (SAs). Every SA consists of a source and destination IP address
that it relates to, a key, an encryption or authentication algorithm, and a
security parameter index (SPI). The SPI is a 32 bit integer that ESP and AH
headers use to refer to an SA.

Consider an example: Node A wants to send a packet to node B. It first
checks its SPD to see if it should apply IPsec, and if so, with what features
and algorithms. Assume that the SPD on A says to use ESP with AES
encryption and AH with an SHA1 hash. Next, A takes a look at the SAD to
find the necessary SAs—one for ESP and another for AH. It takes the key and
algorithm from the ESP SA, applies the algorithm to the data using the key
and adds an ESP header behind the base header. The ESP header contains
the SPI so the receiver can figure out which SA to use to decrypt the packet.
Next, node A does almost the same for the AH header: It takes the key from
the authentication SA, uses it to create a hash value from the key, the payload
and those parts of the IP header that don’t change in transit, and stores the
hash value and the SPI in an AH header it puts behind the base header. Then
it sends the packet to B.

When B receives the packet, it first takes a look at its own SPD to decide
which IPsec features it requires from the packet. If any are missing or use
an insufficiently secure algorithm, then B will silently discard the packet.
Otherwise it will search its SAD for the matching SAs; if multiple SAs for the
given source and destination address exist, then B will use the SPIs from the
headers to find the correct ones in its SAD. It can then check the authenticity
of the packet by verifying the hash value from the AH header and decrypt the
payload. Then it processes the packet as usual.

While this example ignores a number of fine points, it explains how IPsec
works within the kernel.

21.1.4 The Internet Key Exchange Protocol (IKE)

At this point, a major issue remains: How do we distribute those shared keys
between nodes?

We can configure the SAs manually. This approach is simple and avoids
a number of notorious interoperability problems. It is also tedious and error-
prone. And what’s worse, in a way it is less secure than dynamically exchanged
keys: The longer a key is used, the more ciphertext an attacker can gather
for cryptographic analysis for that key. Once the attacker has broken the
key, he can decrypt a huge amount of traffic. What’s worse, even if the
attacker couldn’t break the key, he could still use captured traffic for a replay
attack; with captured NTP packets he could for example turn back a node’s
system clock to prepare for an attack on Kerberos, which relies heavily on
synchronized clocks.

314 21 IP Security (IPsec)

With dynamically distributed keys IPsec can use sequence numbers, much
like TCP, to prevent these replay attacks. For this purpose the kernel asks
a userland program to update the SAD if necessary. This userland program
then uses a public-key cryptography protocol to set up the needed SAs and
sequence numbers on both sides.

The protocol is called Internet key exchange (IKE). It uses parts of the
Internet security association and key management protocol (ISAKMP), which
is why some implementations refer to it as ISAKMP.

IKE operates in two phases. The first phase establishes a secure channel
between the IKE daemons, possibly using public-key cryptography to authen-
ticate each other. This secure channel is then used during the second phase
to exchange shared secrets for the SAs.

In the most simple setup, IKE uses pre-shared keys between nodes to
authenticate and encrypt the exchange of the IPsec keys; this is safer than
using manually configured IPsec keys but still requires a separate key for every
pair of nodes that communicate and a secure means to distribute the keys.

In a more advanced setup IKE uses public key cryptography. With unau-
thenticated, or self-signed, X.509 certificates we only need to distribute an
X.509 certificate for every node to all other nodes; the distribution doesn’t
need to be secret as with shared keys anymore.

Finally, IKE can use X.509 certificates that are signed by a certificate
authority (CA). With these, we only need to distribute the public key of the
CA to all machines, like we do with HTTPS web servers. In fact, since both
HTTPS and its underlying SSL/TLS protocol use X.509 certificates, we can
use the same CA for both SSL/TLS and IKE. If we want to communicate
securely with peers outside our administrative control, then we can use the
services of well-known CAs; their certificates are distributed with virtually all
HTTPS-capable web browsers.

Unfortunately, this scenario isn’t widely supported by implementations.
Taking a look at the documentation available today, IPsec is most commonly
used either between individual hosts or in tunnel mode between VPN end
points. Some implementations don’t actually bother to compare the source
address of an IKE packet with the address stored in the certificate.

The original IKE specification as of RFC 2409 [57] showed two problems:
The key exchange was unnecessarily complicated and a cryptographic weak-
ness in the IKE exchange was discovered. In December 2005, RFC 4306 [31]
specified a successor protocol Internet Key Exchange Version 2 (IKEv2) to
remedy these problems. Unfortunately, IKEv2 implementations aren’t gener-
ally available yet.

21.1.5 References

IPsec is standardized in an entire cluster of RFCs; these are the most impor-
tant ones:

21.2 Open Problems 315

RFC 4301 [81] defines the fundamental IPsec architecture, RFC 4302 [78]
the authentication header and RFC 4303 [79] the encapsulating security pay-
load. RFC 3280 [68] specifies a X.509 public key infrastructure for the Internet
in general, RFC 2409 [57] IKEv1 and RFC 4306 [31] IKEv2.

A number of additional RFCs specify the cryptographic algorithms that
IPsec supports; they are referenced in the main RFCs.

21.2 Open Problems

Before we consider setting up IPsec in an environment we should take a closer
look at its security implications. Some of these are direct effects of the fact
that IPsec operates within the network layer; others are consequences of the
IPsec standards and their implementations; yet others are related to authen-
tication and encryption in general.

In short, IPsec solves a limited range of security concerns at a very high
price. It is a long way from the catch-all security solution that some people
claim it to be.

21.2.1 Inherent Limitations

The specifications for IPsec are excessively long. The most relevant and cur-
rent RFCs exceed 450 pages (see section 21.1.5), not including the now out-
dated IKEv1. The consequences are notorious interoperability problems and
a high chance of faulty implementations that might be exploitable.

IPsec operates within the network layer, so it only provides authentica-
tion and encryption between nodes. It is not a substitute for SSL/TLS, or
SSH, or other application-layer mechanisms that provide cryptographic pro-
tection for individual users or processes. Neither is it a full substitute for
missing encryption and authentication at the application level—telnet over
IPsec is still inferior to SSH because it doesn’t authenticate a user by a public
key. But then, SSL/TLS and such don’t provide proper protection between
nodes: Running neighbor discovery through SSL/TLS won’t work, because
first SSL/TLS needs neighbor discovery to have finished before it can set up
its TCP connection.

SSL/TLS provides authentication based on DNS names while IPsec au-
thenticates IP addresses only. Since few people bother to remember the IP
address of online-banking.example.com and even fewer will bother to track
the occasional renumberings, authentication should really be based on DNS
names. IPsec can’t offer this: while it may be possible to do a DNS lookup on
a DNS name stored in an X.509 certificate, doing so relies on the security of
the DNS system; even though attempts have been made to retrofit DNS with
up-to-date security features, these can’t compete with the way that SSL/TLS
authenticates the DNS name directly.

316 21 IP Security (IPsec)

Originally, IPsec only supported unicast packets. Multicast groups were
considered “publicly accessible” and therefore couldn’t be encrypted. Authen-
tication support was also missing; in theory it is possible to sign every packet
using public key cryptography, but with today’s public-key algorithms doing
so is prohibitively CPU-expensive. Since IPv6 uses multicasts for a number of
internal purposes, from neighbor solicitations and router discovery to various
dynamic routing protocols, all of these are still unprotected even when IPsec
is in use. RFC 3740 [56] and the latest IPsec RFC suite add multicast support
to the IPsec framework but still don’t specify any cryptographic algorithms
that could actually be used for multicast authentication or encryption.

According to RFC 2406 [80], IPsec implementations were only required to
provide the “NULL” encryption, which doesn’t actually encrypt the payload
at all, and DES (data encryption standard) in CBC (cipher block chaining)
mode, which has been broken using brute force as far back as 1998. Crypto-
graphically strong algorithms were optional. Microsoft’s Windows XP doesn’t
even implement DES, so its IPsec implementation not only violates RFC 2406
but provides no encryption at all. RFC 4305 [29] recently changed these re-
quirements but hasn’t been widely implemented yet.

Surprisingly enough, encryption can actually reduce security. If we allow
end-to-end encryption between machines inside our network and others on the
outside, people can send data in and out without our control: Business secrets,
malware or whatever. With IPsec, a packet filter can’t even determine the
transport layer protocol and port number used; it just notices some kind of
traffic from workstation X to dns0.example.net but can’t tell if it is genuine
DNS traffic or anything else.

Finally, encryption and authentication tend to provide people with an
exaggerated feeling of security. The huge increase of phishing attacks using
HTTPS with invalid certificates demonstrates that a large fraction of people
believe online banking is safe “because it is encrypted and everything”.

21.2.2 Implementation Issues

Beyond the fundamental concerns we’ve addressed in the previous section,
real-world implementations suffer from a number of additional problems.

Most implementations provide some strong encryption algorithms, but in
a heterogeneous environment it may happen that no universally supported
algorithm exists, even without Microsoft Windows XP boxes that only support
“NULL” encryption.

Debian Sarge exhibits some erratic behaviour concerning IPv6 entries in
the security policy database: Requiring encryption for UDP packets blocks
neighbor discovery.

Setting up a certificate authority requires OpenSSL 0.9.8 or later; older
versions don’t support IPv6 addresses in the altSubjectName field.

IKEv2 support is mostly missing; so far only FreeBSD 6.1 offers an im-
plementation racoon2, which comes without proper documentation. Using

21.3 Packet Filter Considerations 317

signed X.509 certificates is apparently possible, but not documented. Debian
Sarge and Solaris 10 don’t support IKEv2 at all.

Virtually all implementations focus on setting up a VPN using tunnel
mode. Using IPsec throughout a local network based on signed X.509 certifi-
cates is tedious at best.

Solaris 10 ignores the IP address stored in an X.509 certificate; if a node
holds a certificate signed by a trusted CA, then it can use this certificate with
arbitrary addresses.

21.3 Packet Filter Considerations

Setting up a packet filter for IPsec is fairly simple: We need to let IKE traffic at
port 500/UDP through. In some cases we can filter by AH and ESP headers:

Debian Sarge The ip6tables packet filter supports a matching extension
esp that lets us filter by SPIs.

FreeBSD 6.1 There is no documented feature in pf to filter by IPsec head-
ers, but apparently the proto keyword can be used. 134

If we want to ensure that packets are authenticated, we may need to do
so on the destination node using an appropriate policy.

If we use encryption across the packet filter, then we can’t filter by port
numbers or even protocols anymore. Neither can we filter by packet contents
using “deep inspection” or application level gateways.

22

Mobile IPv6 (MIPv6)

The TCP/IP stack was originally developed when computers were several
tons too heavy to be carried around. Since they were immobile it was only
reasonable to assume that their network connectivity would be static. With
todays smart phones, PDAs and similar devices, network connectivity changes
very often. Mobile IPv6 (MIPv6) offers a mechanism that allows a mobile
node to change its network connectivity while it still keeps its IP address.

Implementations are currently experimental to non-existent and not part
of standard distributions. A wide range of security problems are still unre-
solved. For these reasons we only take a look at the basic concepts and the
problems that they raise.

22.1 Concepts

Mobile IPv6 is fairly complex and introduces an extensive set of new terms.
So we start with a look at the core idea and the features it offers, then learn
about some common optimizations and finally introduce three major func-
tional extensions.

22.1.1 Basic Mobile IPv6

With mobile IPv6, a special mobile node (MN) may temporarily leave its
home network (HN) or home link and connect to the Internet at a differ-
ent point, possibly using a different link-layer technology than in its home
network. While abroad, the mobile node still keeps its IP address from the
home network, called the home address (HoA), so even TCP connections will
“survive” a change in network connectivity.

Consider an example: Before I leave my office to do a training class, my
notebook is connecting to my LAN, which is its home network. When I leave,
I disconnect it and it automatically switches to its GSM/GPRS cell phone

320 22 Mobile IPv6 (MIPv6)

interface. At the training center it switches to the WLAN available there.
On return it switches back to GSM/GPRS and then back to my office LAN.
During the entire time it keeps its regular address from the home network
and its IMAP connection to the mail server at my ISP stays up without
interruption.

So how does this work? Figure 22.1 shows that the key trick is another
node in the home network called the home agent (HA). It behaves much like
a secretary in an office who is always around and always knows where people
are and how to reach them. When a mobile node changes its connectivity,
then it immediately notifies the home agent of the address through which it
is reachable. If this address is not from the home network, then it is called a
care-of address (CoA) and the home agent starts to intercept all traffic to the
home address and forwards it through a tunnel to the care-of address. If the
mobile node returns to its home network and notifies the home agent that it
is reachable at its home address, then the home agent stops intercepting and
forwarding the traffic for the mobile node.

Home Network

Internet

Corres-
pondent
Node

Internet
Router

Home
Agent

Mobile
Node

at home

Mobile
Node
abroad

Fig. 22.1. A mobile IPv6 environment

So even when a mobile node is abroad it can still use its home address. A
correspondent node (CN), like the IMAP server at my ISP, can still send pack-
ets to my home address; the home agent will forward them to my notebook.
The notebook will also send packets to the correspondent node using its home
address as the source address. Mobile IPv6 tunnels them to the home agent
which then sends them untunneled to the correspondent node. If my network
connectivity changes, the correspondent node won’t notice because the home
agent takes care of tracking my care-of address and forwarding packets there.

22.1 Concepts 321

22.1.2 Telling the Home Agent: Binding Updates

Some care has been taken to secure the communication between the mobile
node and its home agent.

When a mobile node moves to another care-of address, then it sends the
home agent a binding update; a binding is an association of (home address,
care-of address) that a home agent maintains for all its mobile nodes. These
binding updates are obviously very sensitive; they allow an attacker to divert
all traffic to the mobile node if they can be faked.

To protect them, the standards require that binding updates are encrypted
using IPsec ESP. We’ll see in section 22.2.2 that the need to keep the binding
updates not only authenticated but also encrypted is most unfortunate, but at
this point we may assume that simple-minded attacks based on forged binding
updates are infeasible.

22.1.3 Bidirectional Tunneling and Route Optimization

Up to this point mobile IPv6 doesn’t offer anything that a reasonably clever
OpenVPN setup or a tunnel broker couldn’t provide either. But mobile IPv6
offers a feature that may significantly reduce latency if the correspondent node
supports it, too.

So far we have assumed that all traffic between the correspondent node
and mobile node passes through the home agent. This is called bidirectional
tunneling. The tunnel between the home agent and mobile node doesn’t use
6in6 encapsulation, but a type 2 routing header. This is a special routing
header, the IPv6 equivalent of loose source routing, that only supports a
single intermediate address. In IPv4 terms, mobile IPv6 uses loose source
routing between the home agent and the mobile node.

If the correspondent node is willing to support mobile IPv6, then routing
can be improved by sending the traffic as figure 22.2 shows. The solid line
denotes the untunneled traffic between the correspondent node and the home
agent and the hollow line the bidirectional tunnel between the home agent
and mobile node. If correspondent node and mobile node are reasonably close
together but the home agent is far away latency-wise, then we can reduce
latency drastically by sending the traffic directly between the correspondent
and mobile node. This concept, called route optimization (RO), is shown in
the diagram as a dashed line.

Route optimization requires the mobile node to send binding updates not
only to the home agent but also to the correspondent node. The correspondent
node has to implement part of the home agent functionality to keep track of
the bindings with mobile nodes.

Since correspondent and mobile node don’t necessarily “know” each other
in the sense that a trustworthy IPsec security association exists between them,

322 22 Mobile IPv6 (MIPv6)

Home Network

Corres-
pondent
Node

Internet
Router

Home
Agent

Mobile
Node

Fig. 22.2. Bidirectional tunneling vs. route optimization

sending binding updates to correspondent nodes introduces a number of secu-
rity risks. To detect bogus binding updates at least in simple cases, a protocol
called return routability test lets a correspondent node check if the binding
update it receives is valid.

This optimization is a feature that we can’t possibly implement with Open-
VPN or a tunnel broker. Near-realtime applications like IP telephony are
sufficiently sensitive to latency to warrant the use of route optimization in
certain situations.

22.1.4 Network Mobility (NEMO)

So far we talked about individual mobile nodes, which should really be called
“mobile hosts”. The network mobility (NEMO) extension to mobile IPv6
features mobile networks which behave similarly to a single mobile node.

The most often heard scenarios for network mobility involve expensive cars
with “advanced on-board telemetric, information and entertainment function-
ality” and so-called “intelligent soldiers” equipped with network-based com-
munications equipment and weapons. Both scenarios demand a high level
of security, so it remains to be seen if mobile IPv6 is applicable for these
purposes.

It may seem reasonably straightforward to extend mobile IPv6 to support
entire mobile networks, but it requires some radical changes on the home
agent, which must now proxy for an entire network prefix or set of network
prefixes. The mobile node becomes a mobile router through which the entire
mobile network connects to its home agent. Communication between the
mobile router and home agent uses a 6in6 tunnel rather than the type 2

22.2 Open Problems 323

routing header. Finally, mobile networks can’t use route optimization; they
must always use a bidirectional tunnel.

22.1.5 Fast Handovers

When a mobile node moves and changes its network connectivity, then it
isn’t reachable for some time: It must establish its new care-of address, send
binding updates to the home agent and its correspondent nodes and do the
return routability test with the correspondent nodes. This delay disrupts
near-realtime services like voice over IP.

When a mobile node obtains a new care-of address while its old care-of
address is still functional, then the fast handover extension ensures a seamless
migration to the new care-of address by using the old address for the binding
updates.

In typical scenarios a mobile node will switch between different link-layer
technologies, for example between Ethernet, WLAN and GSM/GPRS. If the
switch uses the same link-layer interface, for example when it uses a single
WLAN interface to switch between different WLAN access points, then fast
handovers are infeasible.

22.1.6 Hierarchical Mobile IPv6

If fast handovers don’t apply, for example because we just want to use mobile
IPv6 between adjacent WLAN networks, then another extension to mobile
IPv6 becomes interesting: Hierarchical mobile IPv6 (HMIPv6) avoids sending
binding updates to far away home agents and correspondent nodes.

To do so a mobile anchor point (MAP), which is located in close proximity
to the WLAN networks in our example, tracks the mobile node as long as
it moves between the subnets that the mobile anchor point handles. The
mobile node sends binding updates to the mobile anchor point only, which
then ensures that all traffic is routed to the mobile node in whichever subnet
it currently connects to.

This extension is probably very useful especially when large WLAN envi-
ronments need to support roaming. WLAN offers some roaming functionality
at the link layer, but this doesn’t scale arbitrarily. Mobile IPv6 scales much
better, but if fast handovers can’t be used, then every move between subnets
causes a short loss of connectivity. Hierarchical mobile IPv6 mitigates this
problem at least in certain scenarios.

22.2 Open Problems

At this time, mobile IPv6 is unfit for practical use for two major reasons: Im-
plementations are scarce and incomplete and a variety of fundamental security
concerns are entirely unresolved.

324 22 Mobile IPv6 (MIPv6)

22.2.1 Available Implementations

At the time of this writing, mobile IPv6 support is barely available.

Debian Sarge An experimental implementation for Linux is available from
the “mobile IPv6 for Linux” (MIPL) project, but is based on drafts of the
standards and doesn’t use IPsec to protect the communication between the
home agent and mobile node. It isn’t available with Debian but must be
added manually and requires a patched kernel. For details, check the MIPL
web site at http://www.mobile-ipv6.org/.

FreeBSD 6.1 The KAME project has implemented mobile IPv6, again
based on drafts of the standards. The results were not incorporated into
mainstream FreeBSD, but the sources are available from the KAME project;
http://www.kame.net/newsletter/20031007/ has the details.

Solaris 10 There is no support for mobile IPv6 available. 135

In other words, mobile IPv6 support is still a long way from a production
grade feature at this time.

22.2.2 Unanswered Security Questions

It should be obvious by now that mobile IPv6 raises a number of security
concerns that scare any security-conscious network administrator. It is rea-
sonable to take a look at these concerns even though mobile IPv6 isn’t really
available yet.

We won’t even attempt to do an exhaustive security evaluation of the
mobile IPv6 design. To demonstrate the risks that it introduces we focus on
a single scenario: A company network with some notebooks that need access
to the company network as well as the Internet while abroad. Today these
scenarios are usually implemented with some sort of more ore less standardized
VPN software, in Unix environments often with OpenVPN.

Like all VPN solutions, mobile IPv6 exposes mobile nodes to potentially
hostile environments. Host security on the mobile node must be as strong
as the company firewall or the mobile node may be attacked while abroad to
obtain access to the company network. Commonly used VPN packages often
offer a feature to disable all direct network access while the VPN is established.
It remains to be seen if mobile IPv6 implementations will eventually offer such
a feature.

Another problem with mobile IPv6 concerns privacy: If the mobile node
supports route optimization, then an attacker only needs to ping the node at
its home address to track down its network connectivity. It doesn’t take much
to ping the notebook of a competitor’s CEO and watch the binding updates
we receive; there is nothing illegal about it and it offers some exciting business
intelligence. If the CEO wants to use voice over IP, then route optimization

22.3 Further Reading 325

becomes almost inevitable. At the same time we can’t configure a stateful
packet filter within the company firewall to allow only outbound traffic for
the home addresses of mobile nodes, because that will make voice over IP
difficult to impossible.

Yet another major problem are packet filters and firewalls in general. To-
day’s packet filters don’t provide the functionality to deal with mobile IPv6 to
protect the home network. An entire range of problems exist: Packet filters
don’t filter by routing header and by the addresses that the routing headers
contain, so they can’t filter by home and care-of addresses. Since the binding
updates between home agent and mobile node require IPsec encryption we
have to let all ESP packets through to the home agent; in consequence we
must let these ESP packets through without filtering. While there is a the-
oretical possibility to store all IPsec keys on a packet filter, doing so doesn’t
really help because it makes the packet filter vulnerable to denial of service
attacks that use CPU-intensive cryptography with a minimum of network
traffic.

The routing headers are a problem with respect to at least one more as-
pect: Loose source routing in the IPv4 world has been blocked on virtually
all packet filters because it offers a huge variety of potential attack vectors.
Route optimization needs it, and therefore opens the systems involved to these
attacks.

Correspondent nodes can also be victims of an attack based on route op-
timization: Many access controls are based on IP addresses and network pre-
fixes. If a correspondent node supports route optimization and offers a service
only accessible to an address A, then an attacker can send a binding update
to the correspondent node with its actual address as the care-of address and
A as the home address. Afterwards it can access the service even though it
doesn’t really have the authorization to do so. What’s worse, log files on the
correspondent node will show that the service has been accessed from A. If
A is actually a valid address, then somebody or some node will be blamed for
accessing the service even though they never did.

These considerations are by no means complete. But they should show
that mobile IPv6 is an extremely risky technology that shouldn’t be deployed
without pressing need and extreme care. As of today it is probably advisable
to use OpenVPN or another VPN product that doesn’t even attempt to offer
route optimization.

22.3 Further Reading

Mobile IPv6 is defined in a fairly large number of RFCs. These are the most
important ones.

RFC 3753 [33] contains a glossary of mobility-related terminology and
concepts for both IPv4 and IPv6. RFC 3775 [75] contains the core mobile

326 22 Mobile IPv6 (MIPv6)

IPv6 specification and RFC 3776 [3] covers in detail the IPsec communication
between mobile node and home agent.

RFC 3963 [25] defines network mobility, RFC 4068 [34] fast handovers and
RFC 4140 [102] hierarchical mobile IPv6.

RFC 4225 [93] explains the security aspects of the route optimization de-
sign. Finally, RFC 4487 [83] analyzes in detail which problems arise with
firewalls when they must support mobile IPv6.

23

Quality of Service (QoS)

For a long time the telephony world considered the TCP/IP stack inferior
to the ISO/OSI stack because its best effort strategy on packet forwarding
was considered unfit for near-realtime services like telephony. The IETF at-
tempted to add quality of service features to IPv6 to make IPv6 “near-realtime
capable”.

Since then, H.323, the session initiation protocol (SIP) and proprietary
protocols like Skype have proven that even IPv4 without quality of service
features is “good enough” for telephony services. Still the quality of service
(QoS) features are at least specified, so we take a look at them even though
implementations are generally not available.

23.1 Concepts

Traditional telephony services allocate fixed bandwidth slots between any two
routers on the communications path between two end devices. This guaran-
tees that the bandwidth the communications need are always available—and
introduces a number of problems that make telephony networks so complex
and expensive. One approach, called integrated services, tries to introduce a
similar functionality into IPv6.

An alternative approach, called differentiated services, offers a different
strategy. Many routers today offer some sort of traffic shaping that employs
multiple queues to replace the “first in, first out” principle of traditional packet
forwarding with a reordering feature that ensures that “critical” packets are
forwarded with a higher priority than “less critical” ones. In a way, differenti-
ated services tries to standardize the various traffic shaping frameworks used
in many IP implementations.

Neither approach extends routing in a way that “low latency” packets are
routed differently than “high bandwidth” packets. Such an approach would
require both a new kind of routing table concept and an entire set of new
dynamic routing protocols.

328 23 Quality of Service (QoS)

23.1.1 Integrated Services (IntServ)

The base IPv6 header contains a 20 bit field called the flow label. Together
with the source and destination addresses in the header it identifies a flow, a
unidirectional connection from a single source address to a single destination
address. By default the flow label is set to zero to indicate that a packet
doesn’t belong to a specific flow. But applications may set the flow label to
a different value and integrated services (IntServ) lets them request a fixed,
guaranteed amount of bandwidth from all the routers along the path from the
source to the destination using the resource reservation protocol (RSVP).

Every router supporting integrated services must keep track of the flows
allocated to ensure that it doesn’t guarantee more bandwidth than it has
actually available. It must also check for every flow that it doesn’t exceed the
allocated amount of bandwidth.

This puts an enormous workload on large routers. On a single 2.4 Gbit/s
link on a router we could allocate almost 40 000 flows at 64 kbit/s. If we used
an average link-layer frame size of 100 bytes, then we could send more than
3 million packets per second through that interface. That is one approximately
every 300 nanoseconds, or every 1300 CPU cycles on a 4 GHz CPU.

To reduce the number of flows, RFC 3175 [4] added a feature to integrated
services that offers aggregated flows. This may reduce the number of flows that
a link has to manage, but still the sheer number of packets passing through
makes resource reservation extremely resource intensive.

Integrated services only work if all routers along the path from source to
destination support it. Then it offers guaranteed bandwidth and predictable
latency. If only one router doesn’t support IntServ, then neither bandwidth
nor latency are guaranteed anymore.

To my knowledge no usable implementations of integrated services are
available yet.

23.1.2 Differentiated Services (DiffServ)

A far less ambitious approach that fits much better into the TCP/IP stack
design is called differentiated services (DiffServ). It assumes that some routers
may use traffic shaping features to re-order packets queued to an outbound
interface. Individual packets may be tagged using the traffic class (TC) field
in the IPv6 base header to notify routers about their queueing requirements.

Routers along the way may rewrite the traffic class field to adapt the packet
to local queueing policies. This makes differentiated services exciting: Even
different implementations from different vendors with different traffic shaping
capabilities can be used in a consistent way if differentiated services form the
base for the traffic shaping.

Routers that don’t actively support differentiated services inherently im-
plement a single “first in, first out” queueing policy. High bandwidth routers
like those mentioned in the previous section are rarely dropping packets due

23.2 Is It Necessary? 329

to overload and the jitter, the variance of delay, is usually very small, so there
is simply no need to implement elaborate traffic shaping features on them.

Many of the possible values for the traffic class field are available for local
use, so it is perfectly reasonable to define local policies and implement them
using DiffServ. Border routers to the outside may rewrite the traffic class field
to values that the bordering networks understand.

Unfortunately, until now no basic set of standardized traffic classes has
been specified. So at this point differentiated services aren’t really applicable
at an Internet-wide scope. There are no usable implementations available
either.

23.2 Is It Necessary?

IP telephony over plain IPv4 without quality of service features works reason-
ably well. So do these quality of service features make any sense at all?

23.2.1 Technical Considerations

From a technical perspective there is a fairly simple answer to that question:
Integrated services is extremely complex, doesn’t scale, needs excessive CPU
time on large routers and requires support on all routers along the connection
path; it will be useful only in very special cases.

Differentiated services is simple, scales reasonably well and doesn’t need
support on all routers along the connection path. It simplifies traffic shaping
within an administrative domain by offering a vendor-independent standard-
ized mechanism. Throughout the Internet it can be useful even between dif-
ferent administrative domains as soon as standard traffic classes are specified.

But do we actually need it? Figure 23.1 shows a common scenario with
two company LANs connected to the Internet with low-bandwidth WAN lines
and a public server in the Internet. Where do we need traffic shaping? In
the LANs we may need it in some cases, for example if we run a network-
based backup and IP telephony across the same subnets. With respect to the
Internet however, the links with the lowest bandwidth are the most critical,
because they tend to be either idle or saturated. In the Internet and towards
public servers the lines are statistically hardly ever saturated thanks to the
law of big numbers; the most critical links in the example are the ADSL links,
and since they usually have asymmetric bandwidths, the direction upstream
from the LAN to the Internet most desperately needs traffic shaping. We
can achieve this on the WAN routers without excessive problems either using
differentiated services or a non-standard traffic shaping implementation.

In summary, differentiated services may improve and simplify traffic shap-
ing quite significantly as soon as it becomes available.

330 23 Quality of Service (QoS)

Internet

Company LAN Company LAN

Desktop
Host

Desktop
Host

WAN
Router

WAN
Router

Public
Server

Low
Bandwidth

Uplink
(e.g. ADSL)

Low
Bandwidth
Uplink
(e.g. ADSL)

Fig. 23.1. A typical QoS scenario

23.2.2 Political and Economic Aspects

Recent discussions about the large Internet carriers trying to charge content
providers for the traffic they generate show that quality of service is very
important to the carriers, which are generally telcos as well. There is a strong
non-technical element to quality of service that we should understand before
we even try to use it.

The telcos lose more and more of their telephony business to IP telephony,
so their associated Internet carriers would like it best to sell expensive high-
bandwidth Internet connectivity that still doesn’t support telephony. Alter-
natively they want to charge “premium rates” for “critical traffic”.

But the same performance problems that prevent the implementation of
integrated services on core routers will make it quite challenging to implement
“premium services”. As a personal opinion I suspect that the carriers will try
to degrade performance artificially for traffic that they consider detrimental
to their telephony business rather than improving quality for better-paying
customers; this can be done on any single router, rather than all routers along
the path. Fortunately, switching ISPs isn’t particularly difficult with IPv6, as
we’ll see in section 24.4.

23.2.3 Common Misunderstandings

Possibly due to politically motivated misinformation there are at least two
common misunderstandings with respect to quality of service that deserve to
be resolved.

With respect to integrated services there are frequent rumors that the
resource reservation protocol can trivially be used for a denial of service attack
by simply allocating all available bandwidth on a router.

23.3 Further Reading 331

Of course, if the router is properly configured, then it will simply deny the
request. Additionally, RSVP allocates the bandwidth on all routers along the
path. So the attacker can only reserve as much bandwidth as he has on his
connection. If you consider figure 23.1 again and assume that the attacker is
using one of the desktop hosts, then he can only allocate the bandwidth that
the ADSL link offers—and in doing so he will block his own line rather than
anything else. In a company network nodes that do this can be easily traced.

This doesn’t preclude the possibility that a more elaborate attack might
be successful, but at least the trivial scenario often described won’t work.

Differentiated services are often suspected to be useless “because every-
body will tag everything as ‘premium’ and then we have the same effect as
without quality of service”.

As we have seen above, differentiated services are primarily relevant within
a local network and on uplinks towards an ISP. So again the culprit is easily
traced. Additionally, differentiated services allow routers to change the traffic
class of packets passing through. Strategically placed routers that sanitize the
traffic class fields will deal with this problem up to the point that users that
abuse the traffic class field only affect their own network performance.

23.3 Further Reading

The RFCs most relevant to integrated services and the resource reservation
protocol are RFC 2205 [30] and RFC 2210 [112]; additionally, RFC 3175 [4]
addresses the aggregation of multiple flows.

RFC 2474 [92], RFC 2475 [11] and RFC 3260 [48] cover differentiated
services.

Part VI

Architectural and Operational Topics

24

Renumbering Procedures

Different than IPv4, IPv6 lets us assign multiple addresses to a single interface
at the same time. Together with stateless autoconfiguration this makes it fea-
sible to change IPv6 addresses in a network on the fly without any downtime.

In theory this sounds quite simple and straightforward. In practice how-
ever, a renumbering event requires a little planning and effort. This chapter
points out a strategy and the basic procedures necessary to make the tran-
sition from one global routing prefix to another run smoothly and without
disruption of service. We assume that we want to replace a global routing
prefix with another, keeping the subnet and interface IDs unchanged.

24.1 Preparations

Before we start with the actual renumbering procedure we need to prepare the
network and ourselves for the renumbering. These preparations can be done
long before the actual renumbering, but double-checking them immediately
before an imminent renumbering event is an excellent idea.

We should consider setting up a reasonably sophisticated network moni-
toring system that automatically checks if everything works as expected.

Then we should make sure that we have a fallback access path to all
network components. So we should install site-local addresses, usually from
one of the unique-local address pools, to our network if we haven’t done so
from the beginning. Section 24.2.1 explains in general how to deploy a new
address, so we don’t go into the details here. We should make sure that we can
reach all nodes in our network using these addresses; this includes appropriate
DNS entries, possibly in a dedicated subdomain like fallback.example.com.

Next we deal with the addresses and address prefixes occasionally found
hard-coded in various configuration files. This includes statically configured
addresses in some nodes, like routers and DNS servers, in resolver, packet filter
and access control list (ACL) configurations. We must take care not to miss

336 24 Renumbering Procedures

any of these configurations during the actual renumbering, so it pays to grep

all configuration files on all nodes for hard-coded addresses and prefixes. In a
perfect world all these would be replaced by DNS entries, but the DNS offers
neither a commonly used way to store prefix lengths nor a degree of security
fit for use in packet filter or ACL configurations. In an almost perfect world
we would maintain a correct and complete list of all hard-coded addresses and
prefixes in our network. In practice such a list is often handy but we can’t
possibly rely on it alone, so grep helps to find some items missing on the list.

We need to decide how we want to do the renumbering. Normally we do
a soft renumbering with a grace period during which we may use both old
and new addresses in parallel. In some emergency situations this may not be
feasible, so a hard renumbering without any grace period may be necessary.
A hard renumbering will cause temporary loss of service, so we should avoid
it. But if we have reason to expect such an event, then we can prepare for it
to keep the downtime as short as possible.

In any case we should have a reasonably detailed plan for the renumbering
event. The following sections give a generic outline, but they are no substitute
for a plan that takes local peculiarities into consideration. As usual, the plan
consists of many small steps that can be checked for success and if necessary
allow for a quick rollback.

24.2 Soft Renumberings with a Grace Period

The preferred network renumbering procedure uses both old and new prefixes
during a limited transition period. As the first major step we establish the
new prefix. After that we expire and remove the old prefix.

RFC 4192 [5] suggests a procedure similar to the one presented here. We
consider a few additional details that were beyond the scope of the RFC and
ignore others, like DHCP-based address management, that we consider too
far off mainstream IPv6 usage.

24.2.1 Deploying a New Prefix

Obviously we need a new prefix to install. Together with the new prefix we
need a DNS delegation for the reverse zone. We can set up the reverse zone
in advance, since it doesn’t affect regular operations. We also need to set
up our outside connectivity to support the new prefix, so we must ensure
that the new prefix is routed to our network. Additionally we need to check
with our ISPs that outbound traffic doesn’t get caught in ingress filters as of
RFC 2827 [42] and RFC 3704 [6], especially if we run a multi-homed site as
in chapter 25.1.

� From our border router(s) network connectivity with the new prefix
must work without problems.

24.2 Soft Renumberings with a Grace Period 337

Now we should notify the users about the impending changes and ensure
that all relevant system and network administrators are within reach.

Next we install the new prefix on all our routers, configuring their inter-
faces, routing tables and possibly their packet filter rules. The new prefix
must not yet be distributed using autoconfiguration, though. In parallel we
can update all statically configured addresses, access control lists and other
configurations on all nodes to contain both the old and new prefix. In some
cases it may be necessary to restart various daemons so they re-read their
configuration, which may cause the occasional service interruption if the dae-
mons are badly written. If possible, do this off business hours and ask all
users to check if everything works when they return to their offices.

� Ensure that all services are still available. If you have a proper moni-
toring setup installed, double check it to ensure that everything works
fine.

Now we can distribute the new prefix to all hosts using autoconfiguration.
At this point we don’t really want to use the new addresses yet, so we set
the preferred lifetime to 0. To allow for a fast rollback we also set the valid
lifetime to a low value, like three times the maximum router advertisement
interval. This is 3 × 600 = 1800 seconds or 30 minutes by default, so it is
likely a good idea to lower the maximum advertisement interval first, maybe
down to 60 seconds—then we can invalidate the addresses again within three
minutes.

� All hosts must show an address with the new prefix.

Next we lower the TTL in our DNS zones to a few minutes. This isn’t
strictly necessary, but it helps if we need to roll back the impending changes
to the DNS. Then we add the new addresses to the DNS. A little bit of shell
scripting power is quite useful with the forward zones; the reverse zones can
be copied if we use the $ORIGIN statement judiciously.

� Querying the name server using dig must show that all forward and
reverse zones show correct data.

� Doing the same with tools like ping and traceroute reveals problems
related to the resolver rather than the DNS itself.

At this point even services that use the DNS for “authentication” will be
able to use the new addresses and we are ready to use them. So we configure
the router advertisement daemons with a small but non-zero preferred lifetime
for the new prefix. In reasonably large environments we do this subnet by
subnet so we can monitor the progress and fix problems quickly. If we use a
tool like nsautoupdate via cron jobs, then we must take particular care to
bring up hosts in small batches to avoid overloading the DNS server.

When all subnets use the new prefix, we have successfully deployed the
new prefix. Only testing and a few cleanup tasks are left.

338 24 Renumbering Procedures

� Check that all services work as expected.
� If feasible, consider scheduled reboots for all servers to ensure that they

come up with a working configuration again.

If we obtained the new prefix through a temporary tunnel, then we switch
to the final uplink. Section 24.4 takes a closer look at switching providers and
the associated procedures.

As final cleanup tasks we configure all advertising routers to advertise
standard valid and preferred lifetime settings and all name servers to use the
standard TTL value.

24.2.2 Revoking an Old Prefix

With the new prefix up and running we can now revoke the old prefix from
our network. In many aspects we undo the steps in the previous section, but
again it pays off to consider the procedure in detail before executing it.

As the very first step we set the preferred and valid lifetimes of the old
prefix on advertising routers so that hosts shouldn’t use them anymore: We set
the preferred lifetime to 0 to deprecate the old addresses and the valid lifetime
to 7200 seconds to make it possible to invalidate the old address within two
hours; remember that hosts will ignore smaller values for the valid lifetime to
avoid denial of service attacks using bogus router advertisements.

� Check that all services work correctly.

Next we drop the old addresses from the forward DNS zones. This reduces
the traffic using the old addresses quite significantly.

� Again, check that all services work correctly.

Now we remove the old prefix from all configuration except routers and packet
filters, restarting services where necessary. This may again cause some minor
disruptions with badly written daemons and should be done off business hours
if possible.

� Yet again, check that all services work correctly.

Use a packet sniffer to watch for traffic still using the old addresses. There
is bound to be some traffic using existing connections for a long time and it
may be necessary to restart them manually so they switch to the new prefix.

When no more traffic uses the old addresses, we remove them from the
router advertisements. Two hours later the addresses have expired on all
nodes and we can remove the prefix from the router interfaces, routing tables
and packet filter configurations. We can also drop the DNS reverse zone
associated with the prefix.

� For a last time, check that all services work correctly.
� Additionally, check all error logs for hints of problems.

24.4 Changing the Internet Service Provider 339

Now we are done except for some minor cleaning up. If our ISPs do ingress
filtering, then we notify them that we don’t use the prefix anymore; this is
particularly important with multi-homed sites. Finally we notify our users
that the migration is done.

24.3 Emergency Renumberings

If we have to renumber our network without a grace period, then we must
follow a different approach. A hard renumbering is a renumbering event where
we lose the old address before we obtain a new one. It implies a temporary
loss of service and is generally both undesirable as well as avoidable. But
depending on the network peculiarities it may be necessary to prepare for a
hard renumbering as a contingency plan. In other words: Don’t do this if
you can possibly avoid it. A hard renumbering should only be necessary if we
unexpectedly lose our global routing prefix without due warning.

When a hard renumbering event occurs, we need to do several things in
parallel. First we must sever our Internet connectivity so we can still use
the prefix internally. Then we must remove the old prefix, possibly after
deploying a unique-local prefix if we haven’t done so yet; we can follow the
same procedures as in section 24.2. At the same time we must obtain a new
prefix somewhere, possibly together with a new uplink. Then we install the
new prefix. As soon as we have the old prefix removed and the new installed
we can re-connect to the Internet.

Since this is an emergency that should never really happen, we are under
more or less severe time pressure. We have to cut some corners, do only the
most rudimentary intermediate checks and just plan for a lengthy clean-up
period when we deal with the mistakes and omissions we made. Section 25.1
explains how to set up redundant network connectivity to make this most
unfortunate situation as unlikely as possible.

24.4 Changing the Internet Service Provider

A special case of renumbering that is worth some consideration is the situation
that we need to switch from ISP A to ISP B. Again we want to do this with
a minimal and predictable loss of service.

If we can convince management to pay for two uplinks during the transition
period, then we can proceed as explained before with one exception: We need
to route all outbound traffic to the new ISP and tell them about the prefix
from the old provider so they can set up their ingress filtering accordingly.

The situation is more difficult if we only have a single uplink and switch
that from one provider to another. This happens for example with ADSL lines

340 24 Renumbering Procedures

that are provided by a phone company but connected to the Internet through
an ISP that only rents the ADSL frequency range from the phone company.

Assuming that our old ISP isn’t particularly cooperative but the new one
is, we can use a configured or 6in6 tunnel to the new ISP while the old
ISP still operates our uplink. We need to route all outbound traffic through
this tunnel in the case that the old ISP uses ingress filtering and drops our
outbound packets if their source address is from the new prefix. Incoming
traffic to the old prefix will arrive untunneled and traffic to the new prefix
will be tunneled to us. This provides us with the necessary transition period
to set up the new prefix. When we only use the new prefix and the tunnel
as our uplink, then we can switch our uplink to the new ISP, deconfigure the
tunnel and resume normal operations. As long as the old ISP doesn’t delay
the actual switch to the new uplink—and cases have been reported—we can
switch to the new service provider with a scheduled, very short loss of external
network connectivity.

If even this downtime is undesirable, then redundant uplinks through mul-
tiple ISPs are necessary at least for the transition period. The next chapter
explains how set them up.

25

Multi-homing

So far we have assumed that end sites connect to the Internet through a single
provider and hosts connect to a single subnet only. While this is a reasonable
assumption in some cases, in others multiple connections are necessary.

In this chapter we take a look at the problems that we face when we set
up a multi-homed network or host.

25.1 Multi-homed Networks

Any site that needs a reliable Internet access should have redundant uplinks.
With IPv4 this is reasonably complex, requiring provider-independent ad-
dresses (PI addresses), an autonomous system number (ASN) and local BGP
routers. With IPv6 we need to follow a radically different approach because
provider-independent addresses are simply not available.

25.1.1 Life Without Provider-independent Addresses

The IPv4 approach has at least two major drawbacks. Every autonomous
system and its address prefix must be tracked with BGP throughout the
entire default free zone worldwide. According to BGP statistics available
at http://bgp.potaroo.net/, in June 2006 the average core router had to
maintain about 185 000 individual routes. For every packet that a core router
forwards it has to search this routing table. The IPv6 routing tables hold less
than 700 routes and since there are no PI addresses for IPv6, it is expected
to stay reasonably small even when IPv6 becomes the mainstream network
layer protocol.

The other problem is not entirely technical: Even leaf autonomous systems
that don’t route foreign traffic through need to run BGP, which is a bit of
a challenge to the average local network administrator. Mistakes are both
common and critical enough so that providers set up BGP filters to stop
broken BGP data entering their BGP setup.

342 25 Multi-homing

If provider-independent addresses are such a problem, then why do peo-
ple use them? If you tell the average IPv6-unaware network administrator
that there are no PI addresses available for IPv6, then you will quite likely
hear statements like “Then we can’t use it for production, because we need
redundant network connectivity.” But this misses the point: Technically it
is perfectly feasible to get addresses from one ISP and then announce them
with BGP through multiple ISPs; we might have to get our own autonomous
system, but we don’t need PI addresses for this.

The reason why IPv4 network administrators want their PI addresses is
unrelated to multi-homing. If we ever need to switch a moderately large IPv4
network from one ISP to another, then we don’t want to renumber the entire
network.

IPv4 administrators tend to mix up these two problems because in the
IPv4 world both are very closely related. Most BGP routers beyond the bor-
der routers on leaf autonomous systems tend to ignore BGP announcements if
the prefix is too long; this filters out bad BGP announcements usually caused
by faulty configurations of leaf site BGP routers and keeps the routing ta-
bles in the default free zone from growing even faster. So the only way to
set up redundant Internet4 connectivity takes a reasonably short prefix, an
autonomous system number and a BGP leaf configuration.

With IPv6 the situation looks entirely different. A renumbering event
involves a bit of work, but the procedure is manageable and doesn’t cause any
significant downtime as we have seen in chapter 24. Additionally we can use
the fact that IPv6 lets us assign multiple addresses to a single interface. This
allows for a radically new approach to multi-homing.

The following sections explain this new approach. Since it is a bit more
complex we take a look at two partial solutions that are reasonably easy to
understand and then merge them into the final solution.

25.1.2 Redundant Links to a Single Provider

The easiest way to make our Internet connection redundant is quite simple and
commonly used in small environments: We use multiple links to our provider,
as figure 25.1 shows. The most simple case uses a fallback dial-up connection
or similar.

These setups don’t take much: A second line, routers and dynamic routing
on either side of the WAN links. If we use a router appliance that can handle
both the main and fallback line, then we can spare us both the additional
router and the dynamic routing at the price of introducing a single point
of failure. In larger environments we might use multiple active links and
distribute the traffic across them, but right now we focus on a single active
link and a fallback link because this gets us closer to the final solution.

The problem with such a setup is the single provider: If both WAN links
belong to the same provider, then there is a non-negligible risk that this

25.1 Multi-homed Networks 343

Internet

ISP

End site

Fig. 25.1. Redundant links to a single ISP

provider will connect both lines to the same router, run the links at least partly
through the same conduits, be disconnected by their upstream providers, mis-
configure their routing due to serious staff incompetence or work overload or
might be hit by sabotage like a remote denial-of-service attack. So we may
not want to rely on a single provider.

25.1.3 Non-redundant Links to Multiple Providers

To work around these risks we have to use multiple providers. We start with
a configuration that uses only a single WAN link per provider as figure 25.2
shows.

Despite the fact that the network diagram doesn’t look too different from
figure 25.1, the configuration here is noticeably more complex and deserves
some attention.

Both ISPs will assign us a global routing prefix and we must use both
throughout the site. If they implement ingress filtering as of RFC 2827 [42]
and RFC 3704 [6] to block spoofed packets from our site, then we need to
notify each ISP of the prefix that the other has assigned us. Otherwise,
outbound traffic doesn’t change: We just run dynamic routing within the end
site to ensure that all outbound traffic is forwarded to a router with a working
WAN link.

Inbound traffic to the prefix assigned by ISP A will always be routed from
the Internet to ISP A and then across our link from ISP A; similarly, all traffic
to the prefix we received from ISP B will always arrive through their link.

If we run a server that is accessible from the outside, like a web or SMTP
server, then we need to add both its addresses to the DNS. A correctly written
program will try whichever address it finds first and, if it fails, it will switch to

344 25 Multi-homing

Internet

ISP A ISP B

End site

Fig. 25.2. Non-redundant links to a redundant ISPs

the second. This makes the server accessible even during a link failure—but
at a price: The client may wait for a lengthy timeout before it tries the second
address.

To make this setup more or less redundant we need to implement part of
the failover ourselves. We need to monitor the availability of our links, and
possibly even the ISP’s connection to the Internet. When we detect a failure,
for example with our link to ISP A, then we need to deprecate the prefix
from ISP A in all our subnets by setting the preferred lifetime for that prefix
to 0 on all advertising routers. Additionally we must temporarily remove all
addresses with that prefix from the DNS.

Alternatively we might use BGP to announce a temporary route to our
prefix from ISP A through our link to ISP B. If we only announce these routes
while a link is down, then we don’t clutter the routing tables in the default
free zone more than necessary. We will however need our own autonomous
system with BGP border routers. Additionally we must ensure that both
ISPs will accept the temporary routes when we announce them.

No matter which strategy we use, they are reasonably complex to set up,
a failover will take some time and existing connections may fail.

25.1.4 Redundant Internet Connectivity

If we combine redundant providers with redundant uplinks, then we can make
our network connectivity redundant with a very quick failover if a link fails.

There is an obvious way to combine both strategies: Set up redundant links
to multiple ISPs. Unfortunately, four uplinks tend to be slightly expensive,
so we use a trick to keep the number of physical links down at two: Instead

25.1 Multi-homed Networks 345

of a physical fallback link to ISP A we set up a tunnel from ISP A through
the physical link of ISP B to our side and another tunnel from ISP B through
the physical link of ISP A. Figure 25.3 shows the setup with the two tunnels
as the dotted and dashed lines, respectively.

ISP A ISP B

End site

Fig. 25.3. A redundant connectivity architecture

The configuration here is rather complex, but after we have seen the pre-
liminary steps it shouldn’t be impossible to understand. We just need to set
things up step by step.

First we set up those links to both ISPs and make our advertising routers
within the site distribute the global routing prefixes we have received from
them. Within our site we also need to run dynamic routing, so all traffic to
the Internet is routed to one of these links.

At this point we run into a problem: Quagga doesn’t support multiple
OSPFv3 instances on a single router yet. Within our site we probably want
to run OSPFv3 rather than RIPng to speed up convergence after a link failure;
so do the ISPs. If we use Quagga-based routers on both ends of the WAN links,
then we need to work around this limitation. I’d personally run RIPng across
the WAN links, set the route announcement interval to a very short value
(consciously violating the standards while doing so) and make sure that the
ISP-side router announces only a default route and my own router announces
a single aggregated route to the prefix assigned by the ISP.

At this point we should have Internet connectivity as long as both WAN
links are up and running.

Next we configure the tunnels. The actual tunnels are just plain 6in6
tunnels, or possibly configured 6in4 tunnels. The tunnel routers on our side
must have their default route configured to the WAN router that the tunnel

346 25 Multi-homing

runs through. Alternatively we can run a dynamic routing protocol on the
LAN interface of the tunnel routers, but then they must run it in passive
mode and not announce any routes themselves. To make sure that the tunnel
router at the ISP routes traffic back through the Internet and the other ISP,
the remote address of their tunnel configuration must be the one with the
prefix from the other ISP. The ISP’s tunnel router must run a dynamic routing
protocol on its LAN interface and announce a route through the tunnel to the
prefix they assigned us with a metric worse than the direct WAN link.

Now we have a redundant Internet connectivity that will work seamlessly
even if one of the WAN links fails.

There are two optimizations we may apply to save hardware: We can use a
single tunnel endpoint at the end site; then we must use passive dynamic rout-
ing so the tunnel endpoint is capable of sending out traffic through whichever
WAN link is still working. The ISPs will probably not use a dedicated tun-
nel router for every customer but rather configure many tunnels on a single
router.

At this point we still run into problems if an entire ISP fails, possibly
because they lose all Internet connectivity; that will bring down the tunnel,
too. If we want to cope with such a situation, then we must still resort to the
solutions from section 25.1.3 for this special situation.

This entire approach is complex, hard to understand especially when de-
bugging a broken configuration, and difficult to set up correctly; I have person-
ally heard a number of comments along the line “You don’t seriously expect
anyone to do this, do you?” But if I consider the alternative, running a BGP
leaf site, then I personally prefer this setup.

25.2 Multi-homed Hosts

Another multi-homing topic relates to individual hosts that have multiple
network interfaces. This turns out to be troublesome because multi-homed
hosts don’t fit the router–host scheme.

Consider a firewall configuration with two separate packet filters and an
application gateway between them. While these setups are slightly more ex-
pensive than using a single packet filter, some highly security-sensitive envi-
ronments really use a setup as in figure 25.4. The packet filters serve several
major purposes: They filter bad packets at the network and transport layer,
prevent link-layer based attacks and control access to the application level
gateway according to the addresses in the IP packets and transport layer port
numbers. The application level gateway inspects the contents of the packets
at the application layer; typical examples are spam and virus filters for e-mail
or web proxies that enforce a security policy like “no ActiveX” to all nodes in
the protected network. It doesn’t do any forwarding, so all traffic has to pass

25.2 Multi-homed Hosts 347

Outer DMZ Inner DMZ

Internet

Outer
Packet
Filter

Applic.
Level

Gateway

Inner
Packet
Filter

Protected Network

Fig. 25.4. A multi-level firewall with a multi-homed host

through the proper secure proxy services on the gateway. The subnets con-
necting the gateway to the packet filters are called demilitarized zones (DMZ)
since only authorized nodes are allowed to connect to them.

Setting up the application level gateway as a multi-homed host isn’t too
difficult in this case. We just don’t do any autoconfiguration in the DMZs
and configure both the interface addresses and the routes statically.

But things can get complex as soon as either autoconfiguration or dy-
namic routing get involved. In section 4.4 we have already seen that some
implementations make it difficult to prevent a host from listening to router
advertisements. In this case the host may configure an undesired default
route.

Dynamic routing is another problem: All dynamic routing implementa-
tions are expected to check that packet forwarding is enabled before they
even start. But on a multi-homed host we don’t want to forward any pack-
ets. So if we wanted to make our firewall setup highly available and used
two packet filters and dynamic routing on either side of the application level
gateway, then we were in serious trouble. Yes, we could leave it to the packet
filters to block all traffic that would need to be routed through, but in a really
paranoid (or professional) firewall an application level gateway is meant to be
inherently unable to do any packet forwarding at all.

In summary, multi-homed hosts are feasible at least in certain situations,
but as soon as they are connected to a network with an advertising router or
need to run a dynamic routing protocol, then they are a serious problem.

A

Crash Course: DNS & BIND

If you are familiar with the DNS and operating BIND, then this appendix
is probably irrelevant to you. But if you have never set up a name server
before, doing so may be a daunting task. To get started, this section provides
the absolutely necessary basics, so you might get away without reading some
more advanced documentation, like Albitz’ and Liu’s “DNS and BIND” [2] or
the “BIND 9 Administrator Reference Manual” [73] for now. To keep things
simple, we ignore IPv6 and just focus on IPv4 addresses.

A.1 Domain Name System (DNS) Basics

The domain name system (DNS) takes a domain name and uses it to look
up resource records (RRs) associated with that name. Each RR consists of a
domain name, a record type, a record class which is always IN for “Internet”
for our purposes, a time to live (TTL) that specifies how long the entry may
be cached, and finally the associated data.

If we want to surf “www.example.com”, our web server uses the resolver li-
brary to send a forward query to a name server, asking for the “type A” records
associated with the domain name “www.example.com.” to learn about the
IP address of the web server with that name. The web server, when accepting
the connection from the web browser, may use the IP address used by the
browser to do a reverse lookup, making the resolver turn the IP address into
a funny-looking domain name that can be queried for the associated “type
PTR” record. This record should contain the host name of the machine we run
the web browser on.

To make the DNS scalable, names are structured hierarchically. The root
domain, “.” contains all names. Most importantly, it contains the top-level
domains, like “net.” or “org.”. These domains contain the second-level
domains like “benedikt-stockebrand.net.” or the one we use here for our
demonstration purposes, “example.com.”. Within these domains we may
have additional subdomains as well as RRs that actually contain data.

350 A Crash Course: DNS & BIND

Reverse lookups convert IP addresses into domain names in the pseudo do-
main “in-addr.arpa.” by reverting the order of address bytes, thus turning
192.0.2.80 into “80.2.9.192.in-addr-arpa.”.

If you look closely, you see that a domain name always ends in a trailing
dot. This shows that it is a fully qualified domain name (FQDN) and is rooted
in the root zone. A name without a trailing dot is an unqualified domain name
and a default domain name needs to be appended to form the FQDN. If we
configure our system to use “example.com.” as the default domain, then we
can use “www” as an abbreviation for “www.example.com.”.

To make the DNS scale, a domain may delegate a zone to another name
server or set of servers. A zone is like a subdomain, except that it doesn’t
contain the zones it delegates itself. The root servers delegate the “com.” zone
to some other servers, so “example.com.” is still within the root domain, but
not within the root zone. Every RR belongs to a single zone but to an entire
series of domains. (Later on we’ll learn about the two exceptions from this
rule necessary to delegate a zone.)

To make the DNS scale to Internet proportions it is necessary to main-
tain forward and reverse zones independently of each other. This is a major
nuisance in many cases but can’t be helped.

For every zone there is a primary name server (sometimes called the mas-
ter for historical reasons) and a set of secondary name servers (or slaves). The
zone data is actively maintained on the primary and from there distributed to
the secondaries. These servers are called authoritative name servers because
they are assumed to hold correct data at all times.

In contrast to that, name servers are called non-authoritative if they only
provide cached data for the zone in question. They have either queried an
authoritative name server themselves or asked another “upstream” caching
name server called a forwarder. Normally, programs always use a caching
name server, which builds up a rich cache that takes a lot of load from the
authoritative servers while providing for fast DNS lookups. All name servers,
even authoritative ones, usually also operate as a caching server.

A.2 The BIND Name Server

The standard name server software used with Unix is called BIND, short for
Berkeley Internet name domain.

It consists of the actual name server daemon called named and a set of
additional tools.

A.2.1 Installation

To set up a name server, we may first need to install some additional packages:

A.2 The BIND Name Server 351

Debian Sarge The name server proper is in package bind9 and some es-
sential tools like dig in dnsutils.

FreeBSD 6.1 Here the name server is part of the core system, so no ad-
ditional packages are necessary. But we need to build some of the default
configuration by doing

cd /etc/namedb

sh make-localhost example.com

to make our name server usable.

Solaris 10 The name server service manifest and the name server proper
are in the packages SUNWbindr and SUNWbind. Depending on the subrelease
and patchlevel, we may also need to install patch 119783 (SPARC) or 119784
(x86) and reboot the machine to fix a bug1. 136

If you want to use an existing BIND installation, make sure the version of
BIND is at least 9.2.3 or up; otherwise you will run into problems later on.

A.2.2 Base Configuration

The named daemon maintains its configuration in a file called named.conf.
Authoritative name servers store the data of their zones in separate zone files.

Unfortunately, different Unixen have not only complex but also widely
differing default configurations. The named.conf file may reside in /etc (So-
laris 10), /etc/bind (Debian Sarge), /etc/namedb (FreeBSD 6.1) or wherever
else an installation chooses to put it. Additionally, the name server daemon
named is sometimes run in a chroot environment, adding more problems: The
configuration may actually reside in the chroot environment instead of /etc
while a symlink in /etc points to the actual location, usually somewhere
within /var—this can prove disastrous if our backup doesn’t include these
files. In other cases, the boot scripts copy the configuration files from /etc

to the chroot environment whenever we restart named—as a result, they may
happily overwrite any changes we applied there directly, and restarting the
named directly will keep it running with the old configuration.

This leaves you a difficult choice: Either abandon all the standard configu-
ration and start from scratch or adapt the default configuration accordingly.
If you want to start from scratch, a complete albeit minimal configuration
may look like this:

named.conf

options {

directory "/var/named/zonedata";

pid-file "/var/run/named.pid";

allow-query { "any"; };

};

1 On an unpatched system a reboot will disable the DNS service again.

352 A Crash Course: DNS & BIND

It tells the name server that all the zone data files are kept in the directory
/var/named/zonedata, to keep the PID file in a standard place and to allow
queries from any address. At this point the named works as a caching-only
server that is not authoritative for any zones.

Debian Sarge The configuration options for named are kept in a sepa-
rate file /etc/bind/named.conf.options while the zone configurations go
to /etc/bind/named.conf.local. You need to adapt the following examples
accordingly.

FreeBSD 6.1 The named.conf file is located in /etc/namedb/.

Solaris 10 The packages don’t include a default configuration, so we create
a file /etc/named.conf with the minimal configuration shown above and a
directory /var/named/zonedata to hold the zone files. 137

A.2.3 Forwarder Configuration and Fake Root Zones

Next we need to tell the name server how to deal with requests for data that
it isn’t authoritative for. It is easiest to ask our provider for the IP address of
their DNS server and add another line to the options section of named.conf
that reads something like

named.conf

options {

[. . .]
forwarders { 192.0.2.1; };

[. . .]
}

given that the IP address of our provider’s DNS server is 192.0.2.1. The al-
ternative approach, using a hints file that contains the addresses of root name
servers, is beyond the scope of this crash course—see the BIND literature, for
example Albitz and Liu [2, pages 67–69] if you want to do this.

In an isolated test network without Internet connectivity this doesn’t work,
because we can’t reach a forwarder or root name server. Section 5.2.3 has a
solution to deal with this problem: Setting up a fake server for the root zone
will ensure that all requests will be served without waiting for a timeout, but
possibly with a negative result.

A.2.4 Starting the Name Server

Now we enable the named daemon.

Debian Sarge The bind9 package automatically installs the appropriate
boot scripts; we just run /etc/init.d/bind9 start or reboot our machine.

A.2 The BIND Name Server 353

FreeBSD 6.1 We add a line

/etc/rc.conf

named_enable=YES

to /etc/rc.conf and either reboot or run /etc/rc.d/named start by hand.

Solaris 10 We run the command svcadm enable dns/server. 138

At this point we should have a running name server. Checking that it
works is reasonably straightforward:

� Check with ps that the named process is running.

A.2.5 Adding Forward Zones

To make the name server the primary name server for a zone “example.com.”,
we next add the line

named.conf

zone "example.com." { type master; file "example.com.fwd"; };

to our named.conf. The top of a forward zone file looks like this:

example.com.fwd

$TTL 3600

@ SOA dns1.example.com. root.dns1.example.com. (1 15m 5m 30d 1h)

NS dns1.example.com.

NS dns2.example.com.

The first line tells that the default time to live (TTL) is 3600 seconds, or one
hour.

The second line contains the first resource record. The “@” refers to the
zone name, “example.com.”. The SOA record type, for start of authority,
tells a few important things about this zone. The data following consists of the
name of the primary name server (dns1), the mail address of the administrator
with the “@” replaced by a dot, and a list of five numeric parameters used by
the secondary name servers. The serial number is used by the secondaries to
decide if they need to fetch updated zone data from the primary. It must be
incremented whenever the zone data on the primary is changed. The refresh
and retry values specify the interval at which a secondary name server is
supposed to contact the primary to see if the zone has changed and at what
interval to retry doing so if the primary server is unreachable. The expire
value defines for how long a secondary should continue to retry reaching the
primary until it considers its data entirely outdated and stop serving the zone.
The last one is called the minTTL for historical reasons but actually defines
how long a cache stores negative results, i.e. the fact that a given name doesn’t
have a DNS entry. Appending an m, h or d to the last four numbers specifies
them in minutes, hours or days, respectively.

354 A Crash Course: DNS & BIND

The third line starts with white space. This indicates that it refers to
the same domain name as the previous entry. The type NS, for name server,
indicates that it contains a name server for the domain. All authoritative
servers should be listed like this, so the last line specifies a secondary name
server for the domain.

Then follow the IP addresses and other data resource records. It is a good
habit to add localhost here so the loopback address can be reached through
that name independent of the default domain configuration. Additionally we
should add the address of our name server here.

example.com.fwd

localhost.example.com. A 127.0.0.1

dns1.example.com. A 192.0.2.1

Where these files are kept again depends on the particular Unix and their
standard name server configuration.

Debian Sarge The default configuration expects the zone files to be kept
in /var/cache/bind/.

FreeBSD 6.1 The default configuration expects zone files in /etc/namedb.
But it also assumes that primary zone files are kept in a subdirectory master/

and secondary zones files in slave/ with the file statements in the zone

clauses to be adapted accordingly.

Solaris 10 With the sample configuration shown above, all zone files go to
/var/named/zonedata/. 139

A.2.6 Adding Reverse Zones

Reverse zones are quite similar. If we have the address range 192.0.2.0/24

assigned to us, we set up a reverse zone for “2.0.192.in-addr.arpa.”. The
entry in named.conf contains the line

named.conf

zone "2.0.192.in-addr.arpa." { type master; file "192.0.2.rev"; };

if we keep the zone file in 192.0.2.rev. The zone file itself looks like this:

192.0.2.rev

$TTL 3600

@ SOA dns1.example.com. root.dns1.example.com. (1 15m 5m 30d 1h)

NS dns1.example.com.

NS dns2.example.com.

1 PTR dns1.example.com.

Except for the last line it looks exactly like a forward zone. The last line

A.2 The BIND Name Server 355

however contains a PTR record that associates an IP address in pseudo-domain
notation with a “normal” domain name.

The last line makes use of the fact that in a zone file all names without a
trailing period, like “1”, have the zone name appended to form a FQDN, like
“1.2.0.192.in-addr.arpa.” in this case.

A.2.7 Secondary Servers

Finally, if we want to set up our name server as a secondary for yet another
zone, like “example.net.” with its primary name server on 192.0.2.2, we
need to add the lines

named.conf

zone "example.net." {

type slave;

masters { 192.0.2.2; };

file "example.net.fwd";

};

and make sure that the directory with the zone files is writable by the user as
which named is running.

On the primary server, we ensure that an NS record with the name of the
secondary name server exists in the zone. Otherwise the primary won’t notify
the secondary when the zone data changes, which will delay the update of the
zone data stored on the secondary.

Whenever a primary server updates a zone, it sends an update notification
to all secondary name servers which have a NS record in the zone file. Addi-
tionally, the secondary servers periodically ask the primary for the SOA record
of the zone and check if the serial number has changed. When a secondary
server detects that its zone data is out of date, then it initiates a zone transfer,
synchronizes its own copy of the zone with the primary server and saves the
updated data to its own local zone file.

A.2.8 Restarting the Server

As the final step, we need to tell the name server to re-read its configuration.
Especially in the case of chroot’ed name servers it pays to watch out how the
particular Unix wants us to do so:

Debian Sarge We run /etc/init.d/bind9 reload here.

FreeBSD 6.1 Similarly, we run /etc/rc.d/named reload.

Solaris 10 We just run rndc reload directly to make the named reload its
configuration. 140

356 A Crash Course: DNS & BIND

A.2.9 Testing and Debugging

At this point our name server should be up and running, serving the zones
“example.com.” and “2.0.192.in-addr.arpa.”.

The most important tool to see if the name server works as anticipated is
dig, which is part of the BIND distribution. It directly queries a name server,
without using the resolver library. It does however read /etc/resolv.conf to
find the name server(s) to query unless an option @〈name server〉 is also given.
Following that, a fully qualified domain name must be given—unqualified
names won’t have a default domain name appended. Alternatively, an option
-x and an IP address can be given; the address will be expanded into the
matching name in the “in-addr.arpa.” pseudo-domain. Optionally, a query
type may follow. If it doesn’t, an A record type is requested unless we use the
-x option, which implies a PTR query. A query type ANY will query for any
record type, the query type AXFR transfers an entire zone.

� The easiest way to check that the name server works uses dig to look
at the zone: Running

dig @::1 example.com. AXFR

should return all the data stored in the zone, plus some additional
noise.

� If that doesn’t work as expected, take a look at the log files. The named
daemon writes its log messages to the syslogd, so it should be fairly
obvious to see what exactly went wrong.

� Next use a tool like ping6 to see if the resolver deals with the data
correctly. If this has an excessive delay (up to two minutes) either the
forwarder configuration is broken or the fake root zone doesn’t work.

A.2.10 Zone Delegations

To delegate a zone to another nameserver, we add an NS record to the parent
zone referring it to the delegated zone. Additionally, if the name server for
the delegated zone has a name within the delegated zone, its A record is kept
in both the parent and the delegated zone; the extra A records in the parent
zone are called glue record.

Both the parent zone and the delegated zone must contain NS records for
the delegated zone.

A.3 Common Pitfalls

The BIND configuration is notorious for a number of common mistakes novice
(and not so novice) DNS administrators make. Here are the most common
ones:

A.3 Common Pitfalls 357

Missing a trailing period will cause serious problems because the zone
name will be appended. If any record in a forward zone seems to be
broken or a reverse lookup comes up with something that looks like
“www.example.com.example.com.”, first check if the domain name or
PTR data has the necessary trailing dot.

Unchanged SOA serial numbers will make the primary name server de-
liver6 the updated data while the secondaries don’t know of the change
and continue to serve stale data. Best make it a habit to test all DNS
updates on the secondaries, not the primaries.

Missing root zone configuration will cause some pain because it will
lead to long timeouts, up to two minutes depending on the resolver li-
brary. If there are such timeouts, check that the forwarder configuration,
fake root zone or root zone hints work.

B

Assigned Numbers and Addresses

This appendix contains the assigned addresses and numbers used throughout
this book. The lists are meant as a quick reference for the most relevant
addresses and numbers only; for a complete and up-to-date list, check the
Internet Assigned Numbers Authority (IANA) at http://www.iana.org/.

B.1 Addresses and Address Prefixes

Prefix Description
::/96 IPv4-compatible IPv6 addresses (deprecated)
::ffff:0:0/96 IPv4-mapped IPv6 addresses
2000::/3 Globally routed unicasts (already allocated)
fc00::/8 Centrally managed unique-local unicasts

(not yet available)
fd00::/8 Randomly chosen unique-local unicasts
fe80::/10 Link-local unicasts (only fe80::/64 used)
fec0::/10 Site-local unicasts (deprecated)
ff00::/8 Multicasts
other Globally routed unicasts (not yet allocated)

B.1.1 Unicast Addresses

Prefix Description
:: The unspecified address
::1 The loopback address
2001::/32 Teredo prefix
2001:db8::/32 Documentation prefix
2002::/16 6to4 tunnel prefix
2002:c058:6301:: 6to4 public relay router anycast (192.88.99.1)
3ffe::/16 Historic 6Bone testbed address prefix
3ffe:831f::/32 Historic Teredo prefix

360 B Assigned Numbers and Addresses

B.1.2 Multicast Addresses

Prefix Description
ff00::/12 Permanent multicast addresses
ff02::1 All-nodes link-local multicasts
ff02::2 All-routers link-local multicasts
ff02::5 All OSPF routers
ff02::6 OSPF designated and backup designated routers
ff02::9 Routing information protocol (RIPng)
ff02::d All PIM routers
ff02::16 All MLDv2-capable routers
ff02::1:2 All DHCP relay agents and servers
ff02::1:ff00:0/104 Solicited-node multicasts
ff05::2 All-routers site-local multicasts
ff05::1:3 All DHCP servers
ff10::/12 Transient multicast addresses
ff3s:::/24 Unicast-prefix based multicast addresses
ff3s::/96 Source-specific multicast addresses
ff70::/12 Embedded rendezvous point multicast addresses

B.1.3 Multicast Scopes

Value Description
0 Reserved
1 Interface-local
2 Link-local
3 Reserved
4 Admin-local
5 Site-local

Value Description
6, 7 (unnamed)
8 Organization-local
9–d (unnamed)
e Global
f Reserved

B.1.4 Anycast and Other Special Interface IDs

Interface ID Description
0:0:0:0 Subnet router anycast
0:fefe:0:0/32 ISATAP
200:fefe:0:0/32 ISATAP
dfff:ffff:ffff:ff80

–dfff:ffff:ffff:ffff Reserved by IANA

B.2 Transport Layer Port Numbers 361

B.2 Transport Layer Port Numbers

B.2.1 TCP

Port Description
7 Echo

22 Secure shell (SSH)
25 Simple mail transfer protocol (SMTP)
53 Domain name system (DNS)
80 Hypertext transport protocol (HTTP)

123 Network time protocol (NTP)
179 Border gateway protocol (BGP)
443 Secure hypertext transport protocol (HTTPS)

2601 Quagga zebra virtual terminal
2603 Quagga ripngd virtual terminal
2605 Quagga bgpd virtual terminal
2606 Quagga ospf6d virtual terminal

B.2.2 UDP

Port Description
7 Echo

53 Domain name system (DNS)
123 Network time protocol (NTP)
500 Internet key exchange (IKE)
514 Syslog
521 Routing information protocol (RIPng)
546 Dynamic host configuration protocol (DHCPv6) client
547 Dynamic host configuration protocol (DHCPv6) server/relay

1194 OpenVPN default port
3544 Teredo

362 B Assigned Numbers and Addresses

B.3 ICMPv6 Types

Value Description
1 Destination unreachable
2 Packet too big
3 TTL exceeded
4 Parameter problem

128 Echo request
129 Echo reply
130 Multicast listener discovery (MLD) query
131 Multicast listener discovery version 1 (MLDv1) listener report
132 Multicast listener discovery version 1 (MLDv1) listener done
133 Router solicitation
134 Router advertisement
135 Neighbor solicitation
136 Neighbor advertisement
137 Redirect
138 Router renumbering
143 Multicast listener discovery version 2 (MLDv2) listener report

B.4 Protocol Numbers in Next Header Field

Protocol Description
0 Hop-by-hop option
4 4in6 encapsulation
6 Transmission control protocol (TCP)

17 User datagram protocol (UDP)
41 Encapsulated IPv6: 6in4 and 6in6 encapsulation
43 Routing Header
44 Fragment header
46 Resource reservation protocol (RSVP)
47 Generic routing encapsulation (GRE)
50 Encapsulated security payload (ESP) for IPsec
51 Authentication header (AH) for IPsec
58 Internet control message protocol, version 6 (ICMPv6)
59 No next header
60 Destination options
89 Open shortest path first (OSPF)

103 Protocol Independent Multicast (PIM)

B.5 Ethernet 363

B.5 Ethernet

B.5.1 Ethernet Types

Hex Decimal Allocated to protocol
800 2048 Internet protocol, version 4 (IPv4)
86dd 34525 Internet protocol, version 6 (IPv6)
880b 34827 Point-to-point protocol (PPP)

B.5.2 Ethernet Addresses

IPv6 unicast addresses are mapped to the Ethernet address of the interface
they are assigned to.

IPv6 multicast addresses are mapped to Ethernet addresses by append-
ing the last 32 bits of the IPv6 address to the Ethernet multicast prefix
33:33::/16:

x : x : x : x : x : x : abcd : efgh =⇒ 33:33 : ab : cd : ef : gh

Autoconfiguration creates the interface ID from an Ethernet address ac-
cording to this pattern:

ab : cd : ef : gh : ij : kl =⇒ a(b + 2)cd : efFF:FEgh : ijkl

References

The RFCs listed here can be downloaded via FTP from the IETF server at
ftp://ftp.ietf.org/rfc/.

1. Andrew Adams, Jonathan Nicholas, and William Siadak. Protocol Indepen-
dent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised).
RFC 3973, 2005.

2. Paul Albitz and Cricket Liu. DNS and BIND. O’Reilly & Associates, 2001.
3. Jari Arkko, Vijay Devarapalli, and Francis Dupont. Using IPsec to Protect

Mobile IPv6 Signaling Between Mobile Nodes and Home Agents. RFC 3776,
2004.

4. Fred Baker, Carol Iturralde, Francois Le Faucheur, and Bruce Davie. Aggre-
gation of RSVP for IPv4 and IPv6 Reservations. RFC 3175, 2001.

5. Fred Baker, Eliot Lear, and Ralph Droms. Procedures for Renumbering an
IPv6 Network without a Flag Day. RFC 4192, 2005.

6. Fred Baker and Pekka Savola. Ingress Filtering for Multihomed Networks.
RFC 3704, 2004.

7. Tony Bates, Yakov Rekhter, Ravi Chandra, and Dave Katz. Multiprotocol
Extensions for BGP-4. RFC 2858, 2000.

8. Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986, 2005.

9. Supratik Bhattacharyya. An Overview of Source-Specific Multicast (SSM).
RFC 3569, 2003.

10. Peter Bieringer. Linux IPv6 Howto. http://www.bieringer.de/linux/IPv6/.
11. Steven Blake, David L. Black, Mark A. Carlson, and Elwyn Davies. An Ar-

chitecture for Differentiated Services. RFC 2475, 1998.
12. Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels.

RFC 2119, 1997.
13. Randy Bush, Alain Durand, Bob Fink, Olafur Gudmundsson, and Tony Hain

(eds.). Representing Internet Protocol version 6 (IPv6) Addresses in the Do-
main Name System (DNS). RFC 3363, 2002.

14. Brian E. Carpenter and Cyndi Jung. Transmission of IPv6 over IPv4 Domains
without Explicit Tunnels. RFC 2529, 1999.

15. Brian E. Carpenter and Keith Moore. Connection of IPv6 Domains via IPv4
Clouds. RFC 3056, 2001.

366 References

16. Rob Coltun, Dennis Ferguson, and John Moy. OSPF for IPv6. RFC 2740,
1999.

17. Alex Conta and Stephen Deering. Generic Packet Tunneling in IPv6—
Specification. RFC 2473, 1998.

18. Matt Crawford. Binary Labels in the Domain Name System. RFC 2673, 1999.
19. Matt Crawford. Non-Terminal DNS Name Redirection. RFC 2672, 1999.
20. Matt Crawford. Router Renumbering for IPv6. RFC 2894, 2000.
21. Matt Crawford and Christian Huitema. DNS Extensions to Support IPv6

Address Aggregation and Renumbering. RFC 2874, 2000.
22. Michael Daniele, Brian Haberman, Shawn A. Routhier, and Juergen Schoen-

waelder. Textual Conventions for Internet Network Addresses. RFC 4001,
2005.

23. Stephen E. Deering, William C. Fenner, and Brian Haberman. Multicast Lis-
tener Discovery (MLD) for IPv6. RFC 2710, 1999.

24. Stephen E. Deering and Robert M. Hinden. Internet Protocol, Version 6
(IPv6)—Specification. RFC 2460, 1998.

25. Vijay Devarapalli, Ryuji Wakikawa, Alexandru Petrescu, and Pascal Thubert.
Network Mobility (NEMO) Basic Support Protocol. RFC 3963, 2005.

26. Richard Draves. Default Address Selection for Internet Protocol version 6
(IPv6). RFC 3484, 2003.

27. Richard Draves and Dave Thaler. Default Router Preferences and More-
Specific Routes. RFC 4191, 2005.

28. Alain Durand, Paolo Fasano, Ivano Guardini, and Domenico Lento. IPv6
Tunnel Broker. RFC 3053, 2001.

29. Donald E. Eastlake 3rd. Cryptographic Algorithm Implementation Require-
ments for Encapsulating Security Payload (ESP) and Authentication Header
(AH). RFC 4305, 2005.

30. Bob Braden (ed.), Lixia Zhang, Steve Berson, Shai Herzog, and Sugih Jamin.
Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specification.
RFC 2205, 1997.

31. Charlie Kaufman (ed.). Internet Key Exchange (IKEv2) Protocol. RFC 4306,
2005.

32. Jon Postel (ed.). INTERNET PROTOCOL. RFC 791, 1981.
33. Jukka Manner (ed.) and Markku Kojo (ed.). Mobility Related Terminology.

RFC 3753, 2004.
34. Rajeev Koodli (ed.). Fast Handovers for Mobile IPv6. RFC 4068, 2005.
35. Ralph Droms (ed.), Jim Bound, Bernie Volz, Ted Lemon, Charles E. Perkins,

and Mike Carney. Dynamic Host Configuration Protocol for IPv6 (DHCPv6).
RFC 3315, 2003.

36. Rolland Vida (ed.) and Luis Henrique Maciel Kosmalski Costa (ed.). Multicast
Listener Discovery Version 2 (MLDv2) for IPv6. RFC 3810, 2004.

37. Stephen E. Deering (ed.). ICMP Router Discovery Messages. RFC 1256, 1991.
38. Robert Elz. A Compact Representation of IPv6 Addresses. RFC 1924, 1996.
39. Deborah Estrin, Dino Farinacci, Ahmed Helmy, David Thaler, Stephen Deer-

ing, Mark Handley, Van Jacobson, Ching gung Liu, Puneet Sharma, and Lim-
ing Wei. Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol
Specification. RFC 2362, 1998.

40. Dino Farinacci, Tony Li, Stan Hanks, David Meyer, and Paul Traina. Generic
Routing Encapsulation (GRE). RFC 2784, 2000.

References 367

41. Bill Fenner and David Meyer. Multicast Source Discovery Protocol (MSDP).
RFC 3618, 2003.

42. Paul Ferguson and Daniel Senie. Network Ingress Filtering: Defeating Denial
of Service Attacks which employ IP Source Address Spoofing. RFC 2827, 2000.

43. Vince Fuller, Tony Li, Jessica (Jie Yun) Yu, and Kannan Varadhan. Supernet-
ting: an Address Assignment and Aggregation Strategy. RFC 1338, 1992.

44. Vince Fuller, Tony Li, Jessica (Jie Yun) Yu, and Kannan Varadhan. Class-
less Inter-Domain Routing (CIDR): an Address Assignment and Aggregation
Strategy. RFC 1519, 1993.

45. Bob Gilligan, Susan Thomson, Jim Bound, and Jack McCann. Basic Socket
Interface Extensions for IPv6. RFC 3493, 2003.

46. Robert E. Gilligan and Erik Nordmark. Transition Mechanisms for IPv6 Hosts
and Routers. RFC 1933, 1996.

47. Robert E. Gilligan and Erik Nordmark. Transition Mechanisms for IPv6 Hosts
and Routers. RFC 2893, 2000.

48. Dan Grossman. New Terminology and Clarifications for Diffserv. RFC 3260,
2002.

49. Brian Haberman. Allocation Guidelines for IPv6 Multicast Addresses.
RFC 3307, 2002.

50. Brian Haberman. Source Address Selection for the Multicast Listener Discov-
ery (MLD) Protocol. RFC 3590, 2003.

51. Brian Haberman and Dave Thaler. Unicast-Prefix-based IPv6 Multicast Ad-
dresses. RFC 3306, 2002.

52. Silvia Hagen. IPv6 Essentials. O’Reilly & Associates, 1st edition, 2002.
53. Silvia Hagen. IPv6: Grundlagen—Funktionalität—Integration. Sunny Edition,

2004.
54. Silvia Hagen. IPv6 Essentials. O’Reilly & Associates, 2nd edition, 2006.
55. Stephen R. Hanna, Baiju V. Patel, and Munil Shah. Multicast Address Dy-

namic Client Allocation Protocol (MADCAP). RFC 2730, 1999.
56. Thomas Hardjono and Brian Weis. The Multicast Group Security Architecture.

RFC 3740, 2004.
57. Dan Harkins and Dave Carrel. The Internet Key Exchange (IKE). RFC 2409,

1998.
58. Dimitry Haskin and Ed Allen. IP Version 6 over PPP. RFC 2023, 1996.
59. Dimitry Haskin and Ed Allen. IP Version 6 over PPP. RFC 2472, 1998.
60. C. Hedrick. Routing Information Protocol. RFC 1058, 1988.
61. Robert M. Hinden and Stephen E. Deering. IP Version 6 Addressing Architec-

ture. RFC 1884, 1995.
62. Robert M. Hinden and Stephen E. Deering. IP Version 6 Addressing Architec-

ture. RFC 2373, 1998.
63. Robert M. Hinden and Stephen E. Deering. Internet Protocol Version 6 (IPv6)

Addressing Architecture. RFC 3513, 2003.
64. Robert M. Hinden and Stephen E. Deering. IP Version 6 Addressing Architec-

ture. RFC 4291, 2006.
65. Robert M. Hinden, Stephen E. Deering, and Erik Nordmark. IPv6 Global

Unicast Address Format. RFC 3587, 2003.
66. Robert M. Hinden and Brian Haberman. Unique Local IPv6 Unicast Addresses.

RFC 4193, 2005.
67. Robert M. Hinden, Mike O’Dell, and Stephen E. Deering. An IPv6 Aggregat-

able Global Unicast Address Format. RFC 2374, 1998.

368 References

68. Russell Housley, Tim Polk, Warwick Ford, and David Solo. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 3280, 2002.

69. Christian Huitema. An Anycast Prefix for 6to4 Relay Routers. RFC 3068,
2001.

70. Christian Huitema. Teredo: Tunneling IPv6 over UDP through Network Ad-
dress Translations (NATs). RFC 4380, 2006.

71. Christian Huitema and Brian Carpenter. Deprecating Site Local Addresses.
RFC 3879, 2004.

72. Internet Architecture Board (IAB) and Internet Engineering Steering Group
(IESG). IAB/IESG Recommendations on IPv6 Address Allocations to Sites.
RFC 3177, 2001.

73. Internet Systems Consortium (“ISC”). BIND 9 Administrator Reference Man-
ual. http://www.isc.org/sw/bind/arm93/Bv9ARM.pdf, 2005.

74. Jun-ichiro itojun Hagino and Kazu Yamamoto. An IPv6-to-IPv4 Transport
Relay Translator. RFC 3142, 2001.

75. David B. Johnson, Charles E. Perkins, and Jari Arkko. Mobility Support in
IPv6. RFC 3775, 2004.

76. Vijayabhaskar A Kalusivalingam. Network Information Service (NIS) Configu-
ration Options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6).
RFC 3898, 2004.

77. Vijayabhaskar A. Kalusivalingam. Simple Network Time Protocol (SNTP)
Configuration Option for DHCPv6. RFC 4075, 2005.

78. Stephen Kent. IP Authentication Header. RFC 4302, 2005.
79. Stephen Kent. IP Encapsulating Security Payload (ESP). RFC 4303, 2005.
80. Stephen Kent and Randall Atkinson. IP Encapsulating Security Payload

(ESP). RFC 2406, 1998.
81. Stephen Kent and Karen Seo. Security Architecture for the Internet Protocol.

RFC 4301, 2005.
82. Dorian Kim, David Meyer, Hank Kilmer, and Dino Farinacci. Anycast Rende-

vous Point (RP) mechanism using Protocol Independent Multicast (PIM) and
Multicast Source Discovery Protocol (MSDP). RFC 3446, 2003.

83. Franck Le, Stefano Faccin, Basavaraj Patil, and Hannes Tschofenig. Mobile
IPv6 and Firewalls: Problem Statement. RFC 4487, 2006.

84. Gary Scott Malkin. RIP Version 2—Carrying Additional Information.
RFC 1388, 1993.

85. Gary Scott Malkin and Robert E. Minnear. RIPng for IPv6. RFC 2080, 1997.
86. Pedro R. Marques and Francis Dupont. Use of BGP-4 Multiprotocol Exten-

sions for IPv6 Inter-Domain Routing. RFC 2545, 1999.
87. Jack McCann, Stephen E. Deering, and Jeffrey Mogul. Path MTU Discovery

for IP version 6. RFC 1981, 1996.
88. Yasuhiro Morishita and Tatuya Jinmei. Common Misbehavior Against DNS

Queries for IPv6 Addresses. RFC 4074, 2005.
89. John Moy. OSPF Version 2. RFC 2328, 1998.
90. Thomas Narten and Richard Draves. Privacy Extensions for Stateless Address

Autoconfiguration in IPv6. RFC 3041, 2001.
91. Thomas Narten, Erik Nordmark, and William Allen Simpson. Neighbor Dis-

covery for IP Version 6 (IPv6). RFC 2461, 1998.

References 369

92. Kathleen Nichols, Steven Blake, Fred Baker, and David L. Black. Definition
of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
RFC 2474, 1998.

93. Pekka Nikander, Jari Arkko, Tuomas Aura, Gabriel Montenegro, and Erik
Nordmark. Mobile IP Version 6 Route Optimization Security Design Back-
ground. RFC 4225, 2005.

94. Erik Nordmark. Stateless IP/ICMP Translation Algorithm (SIIT). RFC 2765,
2000.

95. Erik Nordmark and Robert E. Gilligan. Basic Transition Mechanisms for IPv6
Hosts and Routers. RFC 4213, 2005.

96. Yakov Rekhter and Tony Li. A Border Gateway Protocol 4 (BGP-4).
RFC 1771, 1995.

97. Yakov Rekhter, Robert G Moskowitz, Daniel Karrenberg, Geert Jan de Groot,
and Eliot Lear. Address Allocation for Private Internets. RFC 1918, 1996.

98. Pekka Savola and Brian Haberman. Embedding the Rendezvous Point (RP)
Address in an IPv6 Multicast Address. RFC 3956, 2004.

99. Pekka Savola and Chirayu Patel. Security Considerations for 6to4. RFC 3964,
2004.

100. Henning Schulzrinne and Bernie Volz. Dynamic Host Configuration Protocol
(DHCPv6) Options for Session Initiation Protocol (SIP) Servers. RFC 3319,
2003.

101. William Allen Simpson. IP in IP Tunneling. RFC 1853, 1995.
102. Hesham Soliman, Claude Castelluccia, Karim El Malki, and Ludovic Bellier.

Hierarchical Mobile IPv6 Mobility Management (HMIPv6). RFC 4140, 2005.
103. W. Richard Stevens. TCP/IP Illustrated, volume 1, The Protocols. Addison-

Wesley, 1994.
104. Benedikt Stockebrand. IPv6 in der Praxis—Teil 1: Weichenstellung. iX,

2/Februar, 2005.
105. Benedikt Stockebrand. IPv6 in der Praxis—Teil 2: Namensdienste und Zeit-

synchronisation. iX, 3/März, 2005.
106. Benedikt Stockebrand. IPv6 in der Praxis—Teil 3: Diensttauglich. iX, 4/April,

2005.
107. Dave Thaler, Bill Fenner, and Bob Quinn. Socket Interface Extensions for

Multicast Source Filters. RFC 3678, 2004.
108. Susan Thomson and Christian Huitema. DNS Extensions to support IP version

6. RFC 1886, 1995.
109. Susan Thomson, Christian Huitema, Vladimir Ksinant, and Mohsen Souissi.

DNS Extensions to Support IP Version 6. RFC 3596, 2003.
110. Susan Thomson and Thomas Narten. IPv6 Stateless Address Autoconfigura-

tion. RFC 2462, 1998.
111. George Tsirtsis and Pyda Srisuresh. Network Address Translation - Protocol

Translation (NAT-PT). RFC 2766, 2000.
112. John Wroclawski. The Use of RSVP with IETF Integrated Services. RFC 2210,

1997.

Index

Rather than providing a separate acronym list, or even a glossary which du-
plicates various parts of the book proper, this index doubles as an acronym
list. Additionally, an online version of this index is available at my home page,
http://www.benedikt-stockebrand.net/, which should be easier to search
than a printed index.

(∗, G) wildcard route (multicast) 264
(S, G) source-specific route (multicast)

264
4in6 encapsulation 170–172
6Bone 28
6in4 encapsulation 150–169
6in6 encapsulation 172–176

and dynamic routing 174–176
interface configuration 173–174
static route configuration 174

6over4 tunnel 176–177
6to4 tunnel 159–169

(border) router 162–163
between 6to4 sites 162–163
default relay router 165–166
host 162
mk6to4 script 159
operational issues 167–169
public relay configuration 167
public relay router 166–167
relay router 163–167
security 169
tunnel host 160–162

A-bit (autoconfiguration) 228
A6 record (DNS) 76
AAAA record (DNS) 71

ABR (area border router, OSPF) 257
ACK flag (TCP) 99
address allocation policy 32–33
address, anycast 30–31
address architecture 21–31
address autoconfiguration, stateless

see autoconfiguration
address configuration 35–64

persistent 38–40
show 37–38
static 35–40
temporary 36–38

address, Ethernet 53–54
address family 3
address, global scope unicast 28
address, link-local unicast 26
address, loopback 25
address, multicast 29–30, 263
address notation 22–24

base 85 23
block 22
compressed form 23
double colons 23
mixed 23

address, primary (IPv4) 25
address resolution protocol (ARP) 40
address, routable 24

372 Index

address, routed 24
address scope 24
address selection 128, 220–223

destination ordering 222
label 221
policy table 221–223
precedence value 221
source selection 221–222
tuning 222–223

address, site-local unicast (deprecated)
27–28, 211–214

address size 21–22
address state (autoconfiguration)

51–52
address, unicast 25–29
address, unique-local unicast 27–28,

211–214
adjacency (OSPF) 251
admin-local multicast scope 29
advantages, IPv6 over IPv4 3
advertisement, solicited router (RA,

autoconfiguration) 45
advertisement, unsolicited router (RA,

autoconfiguration) 45, 53
advertising interval (autoconfiguration)

225–226
advertising router configuration

(autoconfiguration) 46–49,
223–231

aggregated flows (QoS) 328
AH (authentication header, IPsec)

311
ALG see application level gateway
alias, interface 25
all MLDv2-capable routers multicast

group 269
all nodes link-local multicast group 30
all PIM routers multicast group 275
all routers link-local multicast group

30, 268
allow-query (DNS) 70
anchor (packet filter) 16
anti-spoofing (ingress) filter 56–57,

121–124, 343
any source multicast (ASM) 283
anycast address 30–31
anycast rendezvous point (multicast)

288
Apache (web server) 94–97

application layer 7
application level gateway (ALG) 129,

131–133
DNS 131
HTTP 132
NTP 131–132
SMTP 132
syslog 132

architecture, address 21–31
architecture, routing 112–118
area (OSPF) 248, 256–259
area border router (ABR, OSPF) 257
area ID (OSPF) 257
ARP (address resolution protocol) 40
AS (autonomous system, BGP) 108,

235
ASM (any source multicast) 283
ASN (autonomous system number,

BGP) 260, 341
assert message (PIM) 277
attack, ping bounce/smurf 5
authentication (IPsec) 311–312
authentication header (AH, IPsec)

311
authoritative name server (DNS) 350
autoconfiguration, stateless address

(SAC) 43–55
address state 51–52
advertising interval 225–226
advertising router configuration

46–49, 223–231
autonomous flag (A-bit) 228
concepts 44–46
current hop limit 226
DNS see DNS gap
expiring a prefix 230–231
home agent flag 227
host 44
host configuration 49–51
inconsistency (router advertisements)

116–117
link MTU 226
M-bit 228
managed flag 227, 294
node 44
on-link flag (L-bit) 228
other stateful configuration flag 227
over PPP 205–206
per-interface information 226–228

Index 373

preferred lifetime (pltime) 52

prefix advertisement, inconsistent
116–117

reachable time 227

retransmit timer 227

router 44

router advertisement (RA) 52–53

inconsistent 116–117

router lifetime 52, 226

router priority 226

router solicitation (RS) 45, 52–53

solicited router advertisement (RA)
45

subnet prefix information 228–230

tuning 223–231

unsolicited router advertisement
(RA) 45, 53

valid lifetime (vltime) 52

automatic (6in4) tunnel 150–151,
156–159

automatic (6in4) tunnel, security 159

autonomous flag (autoconfiguration)
228

autonomous system (AS, BGP) 108,
235

autonomous system number (ASN,
BGP) 260, 341

backbone area (OSPF) 248, 257

backbone, Internet 32

backup designated router (BDR, OSPF)
251

backup requirements 12

backup, full 12

base 85 encoding 23

base header 31–32

hop limit field 32, 193, 196

next header field 32

payload length field 32

traffic class (TC) field (QoS) 31, 328

version field 31

bash shell 11

BDR (backup designated router, OSPF)
251

Berkeley Internet name domain (BIND)
name server see DNS

BGP (border gateway protocol) 33,
260–261

autonomous system number (ASN)
260

leaf autonomous system 341

multiprotocol extensions 260

packet filtering 262

policy 261

routing information base (RIB) 260

speaker 260

bicycle, learning to ride a 10

bidirectional tunneling (MIPv6) 321

Bieringer, Dr Peter V, X, 24, 74

BIND (Berkeley Internet name domain)
name server see DNS

binding (MIPv6) 321

binding update (MIPv6) 321

bitlabel/bitstring format (DNS) 74, 76

block (address notation) 22

boot scripts and packet filters 19

bootstrap message (PIM) 282

bootstrap router (BSR, PIM-SM)
280–281

border gateway protocol 33, see BGP

Bourne shell VIII

broadcast 29

broadcast, abolition of 4

browser (WWW) 94

BSR (bootstrap router, PIM-SM)
280–281

byte 21

CA (certificate authority, IPsec/X.509)
314

cache module (Apache 2) 95

cache, neighbor discovery 41–42

CandBSR (candidate bootstrap router,
PIM-SM) 280

candidate bootstrap router (CandBSR,
PIM-SM) 280

candidate rendezvous point (CandRP,
PIM-SM) 278

candidate RP advertisement (PIM)
282

CandRP (candidate rendezvous point,
PIM-SM) 278

care-of address (CoA, MIPv6) 320

catman command 12

certificate authority (CA, IPsec/X.509)
314

374 Index

CGI (common gateway interface) script
95

chain (packet filter) 16
channel (SSM) 284
checklist VIII
CIDR (classless inter-domain routing)

33, 103
classless inter-domain routing (CIDR)

33, 103
cloud, network IX
CN (correspondent node, MIPv6) 320
CoA (care-of address, MIPv6) 320
colons, double (address notation) 23
comments, request for (RFC) 34
common gateway interface (CGI) script

95
compatible address (automatic tunnel)

158
compressed form (address notation)

23
configuration mode (Quagga VTY)

239
configuration, address 35–64
configuration, kernel 13–15
configuration, persistent 38–40
configuration, temporary 36–38
configured (6in4) tunnel 150–159
configured (6in4) tunnel, security 159
connection tracking filter (packet filter)

16, 55
consecutive colons (address notation)

23
core, Internet 32
correspondent node (CN, MIPv6) 320
cost metric (OSPF) 255–256
current hop limit (autoconfiguration)

226

DAD (duplicate address detection)
42–43

datagram (UDP) 7
DDNS (dynamic DNS updates)

301–308
Debian Sarge VI
debugging

commands 36–38, 86–88
dual stacks 128
kernel variables 15–16
packet sniffer 12

dedicated router hardware VI
Deepspace6 project 99
default (configured) tunnel 151
default free zone 32, 261, 341
delay (ND state) 42
denial of service 5
deprecated address (autoconfiguration)

52
designated router (DR, OSPF) 250
designated router (DR, PIM-SM) 282
destination address ordering 222
destination cache (ICMPv6 redirect)

104
destination NAT (DNAT) 191
DHCP server, rogue 44
DHCP without the pain (autoconfigu-

ration) 43
DHCP, problems with 43–44
dhcp6 (DHCPv6, FreeBSD) 290
DHCPv6 (dynamic host configu-

ration protocol/IPv6) 289–298,
300–301

address management 294
dhcp6 (FreeBSD) 290
Dibbler (Linux) 289
DNS updates 300–301
dry run 292
installation 289–291
interoperability 297
multicast 296–298
NIS/NIS+ configuration 293–294
NTP configuration 293–294
packet filter 298
relay 295–298
resolver configuration 291–293
security 297–298, 300–301
SIP configuration 293–294
stateless 291–294

diagram, network IX
diagram, protocol flow IX
diameter, network 111
Dibbler (DHCPv6, Linux) 289
differences, IPv4 vs. IPv6 3
differentiated services (DiffServ, QoS)

328–329
DiffServ (differentiated services, QoS)

328–329
dig command
-x option 74, 76

Index 375

ANY option 72, 356
AXFR option 73, 356

disaster recovery, successful 12
DNAME record (DNS) 76
DNAT (destination NAT) 191
DNS (domain name system) 7, 65–79,

131, 349–357
A6 record 76
AAAA record 71
allow-query 70
authoritative name server 350
autoconfiguration see DNS gap
BIND

configuration 351–356
installation 350–351
operation 352–353, 355–356
pitfalls 356–357

bitlabel/bitstring format 74, 76
crash course 349–357
DHCPv6 configuration 291–293
DNAME record 76
DNSSEC (DNS security) 301
domain name 349
dual stacking 127–128
dynamic updates (DDNS) 301–308
fake root zone 70–73
forward query 349
forward zone 71–73, 353–354
forwarder 70, 131, 350
forwarder configuration 70–71, 352
fully qualified domain name (FQDN)

350
gap 299–308

configuration 302–305
future work 307–308
implementation 301–308
non-solutions 299–301
operation 304–307
problem statement 299
security 305–306
solution 301–308

glue record 356
in-addr.arpa. pseudo-domain 350
ip6.arpa. pseudo-domain 73, 76
ip6.int. pseudo-domain 76
legacies 75–77
listen-on-v6 70
master 71–74, 350
naming conventions 65–66

nibble format (PTR record) 73, 76

NS record 354

$ORIGIN statement 74

primary name server 71–74, 350

PTR record 73, 354–355

“quad A” record 71

record class 349

record type 349

resolver configuration 69–70

resolver library 349

resource record (RR) 349

reverse lookup 68, 349

reverse zone 73–74, 354–355

root domain 349

second-level domain 349

secondary name server 75, 350, 355

security (DNSSEC) 301

slave 75, 350

SOA (start of authority) record 353

time to live (TTL) 349

top-level domain 349

TSIG (transaction signature, dynamic
DNS) 301, 303

TTL (time to live) 349

unqualified domain name 350

zone delegation 350, 356

DNSSEC (DNS security) 301

documentation prefix 10

Doering, Gert X

domain name (DNS) 349

domain name system see DNS

don’t fragment flag (IPv4) 120, 193

double colons (address notation) 23

downstream interface (multicast) 264

DR (designated router, OSPF) 250

DR (designated router, PIM-SM) 282

DR-other (OSPF) 251

dual stacks 127–129

debugging 128

DNS 127–128

packet filter 129–130

servers 128–129

duplicate address (autoconfiguration)
51

duplicate address detection (DAD)
42–43

dynamic and static routing, unicast
118–119

376 Index

dynamic DNS updates (DDNS)
301–308

dynamic host configuration protocol
see DHCPv6

dynamic routing 103–106, 108–124,
233–262

across PPP links 204–205
packet filter 123–124, 262
security 117–118
through 6in6 tunnels 174–176

dynamically changing interface IDs
216–220

e-mail 92–93
echo service (inetd) 82–85
ecmh daemon (multicast proxy) 272
EGP (exterior gateway protocol) 235
EIGRP (enhanced interior gateway

protocol) 261
embedded rendezvous point (multicast)

284–285
emergency renumbering 339
enable(d) mode (Quagga VTY) 239
encapsulating security payload (ESP,

IPsec) 311
encapsulation 149–180
encoding, base 85 23
encryption (IPsec) 311–312
end-to-end connectivity 4
enhanced interior gateway protocol

(EIGRP) 261
entry point (tunnel) 144
Epiphany (web browser) 94
equal-cost multipath routing (OSPF)

256
errata list, online VII
ESP (encapsulating security payload,

IPsec) 311
/etc/hosts 67–68
/etc/inet/ipnodes 67–68
/etc/inetd.conf (inetd) 83
/etc/nsswitch.conf 69–70
/etc/xinetd.d (xinetd) 83
Ethereal (packet sniffer) 12
Ethernet 7, 31

address 53–54
address, global bit 53
frame type 31
IEEE EUI-64 format 54

jumbo frame 196

multicast 267

PPP over (PPPoE) 207

EUI-64 format, IEEE 54

exim (MTA) 92–93

exit point (tunnel) 144

expiring a prefix (autoconfiguration)
230–231

extended logging 12

exterior gateway protocol (EGP) 235

faith interface (FreeBSD, protocol
translation) 136–138

fake root zone (DNS) 70–73

family, address/protocol 3

family, Internet protocol 3

fast handover (MIPv6) 323

feeling of security, treacherous (NAT)
10

ffproxy (web proxy) 95–97

filter, anti-spoofing/ingress 56–57,
121–124, 343

Firefox (web browser) 94

first match semantic (packet filter) 16

flag day 8

flag nibble (multicast) 29, 263

flooding (OSPF) 247

flooding (PIM-DM) 275

flow (QoS) 328

flow aggregation (QoS) 328

flow label (QoS, base header) 31, 328

flow, protocol IX

form, compressed (address notation)
23

forward query (DNS) 349

forward zone (DNS) 71–73, 353–354

forwarder (DNS) 70, 131, 350

forwarder configuration (DNS) 70–71,
352

forwarding rules (packet filter)
122–123

FQDN (fully qualified domain name,
DNS) 350

fragmentation, packets 120

frame type, Ethernet 31

FreeBSD 6.1 VI

frustration V

full backup 12

Index 377

fully qualified domain name (FQDN,
DNS) 350

gearbox VI
generic routing encapsulation (GRE)

tunnel 181–182, 187
getaddrinfo(3) library function 220
gif〈n〉 interface (FreeBSD) 153, 170,

173
global bit (Ethernet Address) 53
global multicast scope 29
global routing prefix 28
global scope 24
global scope unicast address 28
glue record (DNS) 356
grace period (renumbering) 336–339
graft acknowledgment message (PIM)

276
graft message (PIM) 276
GRE (generic routing encapsulation)

tunnel 181–182, 187
gre〈n〉 interface (FreeBSD) 181, 182
great switchover 8
group (multicast) 30, 263
group ID (multicast) 30, 263
group member (multicast) 264

HA (home agent, MIPv6) 320
Hagen, Silvia V, X
hard renumbering 339
hardware requirements 10–11
hardware, dedicated router VI
header checksum (IPv4 header) 32
header, base 31–32
headers, IPv6 31–32
hello interval (OSPF) 253
hello message (PIM) 275
hello packet (OSPF) 253
Hexago tunnel service provider 9, 190
hierarchical mobile IPv6 (HMIPv6)

323
HMIPv6 (hierarchical mobile IPv6)

323
HN (home network, MIPv6) 319
HoA (home address, MIPv6) 319
hold time (PIM) 275
home address (HoA, MIPv6) 319
home agent (HA, MIPv6) 320

home agent flag (autoconfiguration)
227

home link (MIPv6) 319
home network (HN, MIPv6) 319
hop limit field (base header) 32, 193,

196
hop limit, current (autoconfiguration)

226
hop-by-hop option header 267
host 44
host configuration (autoconfiguration)

49–51
HTTP (hypertext transfer protocol)

93–97
HTTP proxy 132
httpd (Apache 2) 94–97
HTTPS (secure hypertext transfer

protocol) 93–97
hypertext transfer protocol (HTTP)

93–97

IANA (Internet Assigned Numbers
Authority) 29, 34, 359

ICMP router discovery (IPv4) 103
ICMPv6 packet too big 120
ICMPv6 packets, essential 57
ICMPv6 redirect 103–106
ICMPv6 redirect, packet filter 123
ICMPv6 redirect, performance

115–116
ID, interface 25
ID, scope 27
ID, subnet 28
identifier, interface 25
identifier, scope 27
identifier, subnet 28
IEEE EUI-64 format 54
IETF (Internet Engineering Task Force)

34
ifconfig command 36
IGP (interior gateway protocol) 235
IKE (Internet key exchange protocol,

IPsec) 313–314
implementations (QoS) 329
in-addr.arpa. pseudo-domain (DNS)

350
in.ndpd daemon (Solaris) 48, 223–231
in.ripngd daemon (Solaris) 109–111
incomplete (ND state) 42

378 Index

inconsistency (router advertisements)
116–117

index, online VII
index, whatis 11
index, zone (was: scope ID) 27
INET address/protocol family 3
INET6 address/protocol family 3
inetadm command (Solaris) 84–85
inetd daemon 82–85
inetd super daemon 82–85
inetd, echo service 82–85
ingress (anti-spoofing) filter 56–57,

121–124, 343
inner protocol (tunnel) 143
installation requirements 11–12
instances, multiple (OSPF) 259
integrated services (IntServ, QoS)

328–329
inter-area route (OSPF) 258
interface alias 25
interface configuration

show 37–38
interface configuration (Quagga)

240–241
interface ID 25
interface ID, from Ethernet address

53–54
interface identifier 25
interface route 156
interface, logical 25
interface, loopback 25
interface, physical 25
interface, virtual 25
interface-local multicast scope 29
interior gateway protocol (IGP) 235
intermediate system to intermediate

system intra-domain routing
exchange protocol (IS-IS) 261

Internet 3
Internet Assigned Numbers Authority

(IANA) 29, 34, 359
Internet backbone/core 32
Internet Engineering Task Force (IETF)

34
Internet key exchange protocol (IKE,

IPsec) 313–314
Internet protocol family 3
Internet protocol, version 4 (IPv4) 3
Internet protocol, version 6 (IPv6) 3

Internet RFC (request for comments)
34

Internet security association and key
management protocol (ISAKMP,
IPsec) 314

Internet4 3
Internet6 3
interoperation 127–140
interoperation concepts 127–130
interoperation problems 128
intra-area route (OSPF) 252
intra-site automatic tunnel addressing

protocol (ISATAP) 177
IntServ (integrated services, QoS)

328–329
invalid address (autoconfiguration) 52
IP (Internet protocol) 3
ip command (Linux) 11, 36, 106–108,

264
IP multipathing (IPMP, Solaris) 115
IP telephony 6
IP-in-IP encapsulation 149–180
IP-in-IP tunnel 145
ip.6to4tun〈n〉 interface (Solaris) 161
ip.atun0 interface (Solaris) 158
ip.tun〈n〉 interface (Solaris) 154
ip6.arpa. pseudo-domain (DNS) 73,

76
ip6.int. pseudo-domain (DNS) 76
ip6.tun〈n〉 interface (Solaris) 171,

173
ip6fw (packet filter, FreeBSD) 16
ip6tables (packet filter, Linux) 16
IPMP (IP multipathing, Solaris) 115
IPsec 311–317

authentication 311–312
authentication header (AH) 311
certificate authority (CA) 314
concepts 311–315
encapsulating security payload (ESP)

311
encryption 311–312
implementation problems 314
implementations 316–317
Internet key exchange protocol (IKE)

313–314
ISAKMP (Internet security asso-

ciation and key management
protocol) 314

Index 379

limitations 315–316

open problems 315–317

packet filter 317

references 314–315

security association (SA) 313

security association database (SAD)
313

security parameter index (SPI) 313

security policy database (SPD) 312

transport mode 312

tunnel mode 312

X.509 certificate 314

iptables (packet filter, Linux) 16

IPv4 (Internet protocol, version 4) 3

IPv4 header

checksum field 32

protocol header 32

time to live (TTL) field 32, 193, 196

type of service (TOS) 31

IPv4-compatible address (automatic
tunnel) 158

IPv4-in-IPv6 (4in6) encapsulation
170–172

IPv4-mapped IPv6 addresses 214–216

IPv6 (Internet protocol, version 6) 3

IPv6 control protocol (IPV6CP, PPP)
202

IPv6 headers 31–32

IPv6 support, kernel 13–16

IPv6-in-IPv4 (6in4) encapsulation
150–169

IPv6-in-IPv6 (6in6) encapsulation see
6in6 encapsulation

IPv6-in-UDP-in-IPv4 tunnel 190

IPv6-mapped IPv6 address 86

ipv6calc command 24, 74

IPV6CP (IPv6 control protocol, PPP)
202

IS-IS (intermediate system to interme-
diate system intra-domain routing
exchange protocol) 261

ISAKMP (Internet security association
and key management protocol,
IPsec) 314

ISATAP (intra-site automatic tunnel
addressing protocol) 177

ISP change (renumbering) 339–340

iX magazine X

jitter (QoS) 329
JOIN IPv6 project X
join message (PIM) 283
join/prune message (PIM) 275
jumbo frame (Ethernet) 196

KAME project (BSD) VI
kernel configuration 13–15
kernel IPv6 support 11, 13–16
kernel PPP 199
kernel variables 15–16
knee-jerk reflex (PI addresses) 33
Konqueror (web browser) 94
Krapohl, Reiner X

L-bit (autoconfiguration) 228
label (address selection) 221
last match semantic (packet filter) 16
LCP (link control protocol, PPP) 202
leaf autonomous system (BGP) 341
learning to ride a bicycle 10
legacies (DNS) 75–77
lifetime, preferred (pltime, autoconfigu-

ration 52
lifetime, router (autoconfiguration)

52, 226
lifetime, valid (vltime, autoconfiguration

52
link 24, 35
link (OSPF) 247
link control protocol (LCP, PPP) 202
link layer 7
link MTU (autoconfiguration) 226
link state (OSPF) 247
link state advertisement (LSA, OSPF)

247, 253
link state ID (OSPF) 250
link, virtual (OSPF) 259
link-layer multicast 267
link-local multicast scope 29
link-local scope 24
link-local unicast address 26
Links (web browser) 94
listen-on-v6 (DNS) 70
listener (multicast) 263
listener done (multicast) 268
listener query (multicast) 273
listener report (multicast) 267
logger command 92

380 Index

logging, extended 12
logical interface 25

loop, tunnel 193–195
loopback address 25

loopback interface 25
LSA (link state advertisement, OSPF)

247, 253
lsof command (Linux) 86

Lynx (web browser) 94

M-bit (autoconfiguration) 228

Mackerras, Paul 199
MADCAP (multicast address dynamic

client allocation protocol) 286
mail relay 132

mail transfer agent (MTA) 92–93
man pages 11

managed flag (autoconfiguration) 227,
294

MAP (mobile anchor point, MIPv6)
323

mapped addresses 214–216

Massar, Jeroen X, 215
master (DNS) 71–74, 350

maximum response delay (MLD) 268,
274

maximum transmission unit (MTU)
120, 195–196, 226

mcast-tools package 271
mcjoin command 266

meltdown, network 193
metric type (OSPF) 259

Microsoft Windows VI
migration, soft 8

MIPv6 see mobile IPv6
Miredo project (Teredo) 182

mixed (address) notation 23
mk6to4 script 159

MLD (multicast listener discovery)
266–271, 273–275

listener done 268

listener query 273
listener report 267

maximum response delay 268, 274
querier 274

source filtering 270
versions (MLDv1/v2) 266–267

MN (mobile node, MIPv6) 319

mobile anchor point (MAP, MIPv6)
323

mobile IPv6 (MIPv6) 319–326
bidirectional tunneling 321
binding 321
binding update 321
care-of address (CoA) 320
concepts 319–323
correspondent node (CN) 320
fast handover 323
hierarchical mobile IPv6 (HMIPv6)

323
home address (HoA) 319
home agent (HA) 320
home link 319
home network (HN) 319
implementations 324
insecurity 324–325

correspondent node 325
host security 324
loose source routing 325
packet filter 325
privacy 324–325
routing header 325

mobile anchor point (MAP) 323
mobile node (MN) 319
mobile router 322
network mobility (NEMO) 322–323
open problems 323–325
references 325–326
return routability test 322
route optimization (RO) 321–322
security see mobile IPv6, insecurity
type 2 routing header 321

mobile node (MN, MIPv6) 319
mobile router (MIPv6) 322
mountd (NFS) 98
Mozilla (web browser) 94
mrd6 daemon (PIM-SM, Linux) 278
MSDP (multicast source discovery

protocol) 288
MTA (mail transfer agent) 92–93
MTU (maximum transmission unit)

120, 195–196, 226
MTU, link (autoconfiguration) 226
multi-homed host 244, 346–347
multi-homed network 341–346

with redundant tunnels 344–346
without redundant links 343–344

Index 381

multicast 29–30, 263–288
address 29–30, 263
advanced topics 288
all MLDv2-capable routers group

269
all nodes link-local group 30
all routers link-local group 30, 268
allocation 285–286
any source (ASM) 283
anycast rendezvous point 288
channel (SSM) 284
diagnostics 264–266
downstream interface 264
ecmh daemon 272
embedded rendezvous point 284–

285
Ethernet 267
flag nibble 29, 263
group 30, 263
group ID 30, 263
group member 264
link-layer 267
listener 263
listener query 273
mcjoin command 266
multicast listener discovery see

MLD
operation 286–287
packet filter 287–288
permanent address 29
ping6 command (Linux) 266
receiver 264
references 288
routing see PIM, PIM-DM and

PIM-SM
routing table 264
scope 29
scope nibble 29, 263
sender 264
solicited-node group 41
source discovery protocol (MSDP)

288
source-specific (SSM) 283–284
source-specific route (S, G) 264
terminology 263–264
transient address 29
unicast-prefix-based 285–286
upstream interface 264
VMware problems 272

wildcard route (∗, G) 264
multicast address dynamic client

allocation protocol (MADCAP)
286

multiple instances (OSPF) 259
multiprotocol extensions (BGP) 260

NA (neighbor advertisement) 40–41
name server see DNS
naming conventions (DNS) 65–66
NAT (network address translation) 4,

10, 135
NAT and tunnels 190–193
NAT-PT (network address trans-

lation/protocol translation)
136

ND (neighbor discovery) 40–43
ndd command (Solaris) 15
neighbor advertisement (NA) 40–41
neighbor discovery (ND) 40–43
neighbor discovery cache 41–42
neighbor discovery states 41–42
neighbor solicitation (NS) 40–41
neighbor unreachability detection

(NUD) 41–42
NEMO (network mobility, MIPv6)

322–323
nested tunnels 146, 193–195
netcat command 87, 88
netcat6 command (Linux) 87
netstat command 11, 86–87, 264–265
network address translation (NAT) 4,

10, 135
network address translation/protocol

translation (NAT-PT) 136
network cloud IX
network diagram IX
network diameter 111
network file system (NFS) 97–98
network information service

(NIS/NIS+) and DHCPv6
293–294

network layer 7
network meltdown 193
network mobility (NEMO, MIPv6)

322–323
network redundancy 113–115
network time protocol see NTP
network, private 24

382 Index

next header field (base header) 32
NFS (network file system) 97–98
nibble (half-byte) 22
nibble format (DNS PTR record) 73, 76
NIS/NIS+ (network information

service) and DHCPv6 293–294
nmap command 87
node 44
non-existent interface (Quagga) 235
not so stubby area (NSSA, OSPF) 259
notation, address 22–24
notation, mixed address 23
notation, prefix 23
NS (neighbor solicitation) 40–41
NS record (DNS) 354
NSSA (not so stubby area, OSPF) 259
NTP (network time protocol) 89–91

DHCPv6 configuration 293–294
proxy 131–132
stratum 131

ntpd daemon 89–91
ntpdc command 90
ntpq command 90
NUD (neighbor unreachability

detection) 41–42

obtaining a prefix 9–10
octet 21
off-link address 45
Ohno, Toshiharu 199
on-link flag (autoconfiguration) 228
online errata list VII
online index VII
online supplement VII
online update VI
open shortest path first see OSPF
OpenSSH 88–89
OpenVPN 183–187
organization-local multicast scope 29
$ORIGIN statement (DNS) 74
OSPF (open shortest path first)

246–260
adjacency 251
area 256–259
area border router (ABR) 257
area ID 257
backbone area 257
backup designated router (BDR)

251

basic concepts 247
cost metric 255–256
designated router (DR) 250
DR-other 251
equal-cost multipath routing 256
features and limitations 246–247
flooding 247
hello interval 253
hello packet 253
inter-area route 258
intra-area route 252
link 247
link state 247
link state advertisement (LSA) 247,

253
link state ID 250
metric type 259
multiple instances 259
not so stubby area (NSSA) 259
operational issues 259–260
packet filtering 262
priority (DR) 251
router dead interval 253
router ID 248
scalability 256–259
shortest path first (SPF) tree 251
status information 250–252
stub area 259
timing parameters 252–254
virtual link 259
with Quagga 247–260

ospf6d daemon (Quagga) 247
OSPFv3 see OSPF
other stateful configuration flag

(autoconfiguration) 227
outer protocol (tunnel) 143
overview of IPv6 3–8

packet filter VIII
anchor 16
application level gateway (ALG)

133
BGP 262
boot scripts 19
chain 16
connection tracking filter 16, 55
DHCPv6 298
dual stack 129–130
dynamic routing 123–124, 262

Index 383

first match semantic 16
forwarding rules 122–123
ICMPv6 redirect 123
ingress filter 56–57, 121–124, 343
ip6fw (FreeBSD) 16
ip6tables (Linux) 16
IPsec 317
last match semantic 16
MIPv6 325
multicast 287–288
OSPF 262
parentheses (pf/FreeBSD) 18, 56,

60
performance 101–102
pf (FreeBSD) 17
pfctl command (FreeBSD) 18
PPP and 207
protocol translation 140
quick option 16
REJECT (Linux/ip6tables) 18
rewriting filter 55
RIPng 262
routing 120–124, 262
RPC (remote procedure call) 99
sanitizing 56
source validation 56–57, 121–124,

343
stateful filter 16, 55
stateless filter 55
syslog 99
TCP/UDP 99–102
tunnels and 177–180, 187

packet redirection 191
packet sniffer 12
packet too big (ICMPv6) 120
pain, DHCP without the (autoconfigu-

ration) 43
parentheses (pf/FreeBSD) 18, 56, 60
passive interface (RIPng/Quagga) 243
path MTU (PMTU) 120
path MTU (PMTU) discovery 120
payload length field (base header) 32
per-interface information (autoconfigu-

ration) 226–228
performance

ICMPv6 redirect 115–116
packet filter 101–102
router 115

permanent multicast address 29

persistent address configuration 38–40
Personal Pet Unix VII
pf (packet filter, FreeBSD) 17
pfctl command (FreeBSD) 18
PhD thesis VI
physical interface 25
PI (provider-independent) addresses

5, 33, 341–342
PIM (protocol independent multicast)

271–273, 275–288
all PIM routers multicast group 275
assert message 277
bootstrap message 282
candidate RP advertisement 282
graft acknowledgment message 276
graft message 276
hello message 275
hold time 275
join message 283
join/prune message 275
mcast-tools package 271
operation 286–287
prune message 283
register message 282
register stop message 282
reverse path forwarding (RPF) check

277
PIM-DM (protocol independent

multicast—dense mode) 271–277
advantages and limitations 277
filter configuration 272–273
flooding 275
installation 271–272
mcast-tools package 271
operation 286–287
pim6dd daemon 271–273
protocol details 275–277

PIM-SM (protocol independent
multicast—sparse mode) 278–
285

(shared) rendezvous point tree
(RP-tree) 283

bootstrap router (BSR) 280–281
candidate bootstrap router (Can-

dBSR) 280
candidate rendezvous point (Can-

dRP) 278
designated router (DR) 282
installation 278–280

384 Index

mcast-tools package 271
mrd6 daemon 278
operation 281, 286–287
pim6sd daemon 278
protocol details 282–283
rendezvous point (RP) 278
shortest path tree (SP-tree) 283
source-based forwarding tree

(SP-tree) 283
pim6dd daemon (PIM-DM) 271–273
pim6sd daemon (PIM-SM) 278
ping bounce attack 5
ping/ping6 command 11
ping6 command (Linux) 266
plan, network IX
pltime (preferred lifetime, autoconfigu-

ration) 52
PMTU (path MTU) 120
point-to-point protocol see PPP
poisoned reverse (RIPng) 112
policy, address allocation 32–33
port number (transport layer) 7
Postfix (MTA) 93
PPP (point-to-point protocol) 199–

207
address and route configuration

202–204
autoconfiguation 205–206
basic configuration 200–202
dynamic routing across 204–205
implementations 199
IPv6 control protocol (IPV6CP)

202
kernel PPP implementation 199
link control protocol (LCP) 202
multiple interfaces 206–207
operational issues 206–207
over Ethernet (PPPoE) 207
packet filter considerations 207
ppp daemon 199
pppd daemon 199
userland PPP implementation 199

precautions, security 12–13
precedence value (address selection)

221
preferred address (autoconfiguration)

52
preferred lifetime (pltime, autoconfigu-

ration) 52

prefix advertisement, inconsistent
116–117

prefix deployment 336–338
prefix expiration (autoconfiguration)

230–231
prefix information (autoconfiguration)

228–230
prefix notation 23
prefix revocation 338–339
prefix, documentation 10
prefix, global routing 28
prefix, obtaining a 9–10
prefix, subnet 25
preparations 9–19
primary address (IPv4) 25
primary name server (DNS) 71–74,

350
priority, router (autoconfiguration)

226
privacy extensions 216–220
private network 24
privileged mode (Quagga VTY) 239
probe (ND state) 42
problems with DHCP 43–44
protocol family 3
protocol flow diagram IX
protocol header (IPv4 header) 32
protocol independent multicast see

PIM
protocol independent multicast—dense

mode see PIM-DM
protocol independent multicast—sparse

mode see PIM-SM
protocol translation 135–140
faith interface (FreeBSD) 136–138
operational issues 139–140
packet filter considerations 140
trick-or-treat daemon (totd)

137–140
provider-independent (PI) addresses

5, 33, 341–342
proxy 129
proxy module (Apache 2) 95
proxy, web 95–97
prune message (PIM) 283
PTR record (DNS) 73
pTRTd (Linux) 136

qmail (MTA) 93

Index 385

QoS see quality of service
“quad A” record (DNS) 71
Quagga (routing framework) 109–111,

233–262
configuration mode (VTY) 239
debugging 110, 241–242
enable(d) mode (VTY) 239
features 233–235
installation 235–239
interface configuration 240–241
non-existent interface 235
OSPF

area 256–259
area support 257–259
configuration 247–256
status information 250–252
timing parameters 252–254

ospf6d daemon 247
password management 261
privileged mode (VTY) 239
RIPng 109–111, 242–246

access list 244
enabling 242–243
metric tuning 244–245
passive interface 243
restricting 243–244
route aggregation 245
timing parameters 245–246

ripngd daemon 109–111
router advertisement 241
running configuration 240
startup configuration 240
static route configuration 241
supported protocols 235
unprivileged mode (VTY) 239
virtual terminal (VTY) 234,

239–240
vtysh command shell 261
watchquagga daemon 261
zebra daemon 109–111, 234

quality of service (QoS) 327–331
aggregated flows 328
concepts 327–329
differentiated services (DiffServ)

328–329
flow 328
flow aggregation 328
flow label (base header) 31, 328
implementations 328, 329

integrated services (IntServ)
328–329

jitter 329
misunderstandings 330–331
money 330
politics 330
references 331
resource reservation protocol (RSVP)

328
technical assessment 329
traffic class (TC) field (base header)

31, 328
traffic shaping 328–329

querier (MLD) 274
quick option (packet filter) 16

RA (router advertisement, autoconfigu-
ration) 45, 52–53, 116–117

radvd daemon (Linux) 47, 223–231
RAM (random access memory) 11
reachable (ND state) 42
reachable time (autoconfiguration)

227
realtime capabilities see quality of

service
receiver (multicast) 264
record class (DNS) 349
record type (DNS) 349
recovery, successful disaster 12
redirect, ICMPv6 103–106
redundancy, network 113–115
redundant uplink see multi-homed

network
reflex, knee-jerk (PI addresses) 33
register message (PIM) 282
register stop message (PIM) 282
REJECT (Linux/ip6tables) 18
remote procedure call (RPC) 97
rendezvous point (RP, PIM-SM) 278
rendezvous point tree (RP-tree,

PIM-SM) 283
renumbering procedures 335–340

grace period 336–339
hard/emergency renumbering 339
ISP change 339–340
prefix deployment 336–338
prefix revocation 338–339
preparations 335–336
soft renumbering 336–339

386 Index

renumbering protocol 231
request for comments (RFC) 34
requirements

backup 12
disaster recovery 12
hardware 10–11
installation 11–12

resolver configuration (DHCPv6)
291–293

resolver configuration (DNS) 69–70
resolver library (DNS) 349
resource record (RR, DNS) 349
resource reservation protocol (RSVP,

QoS) 328
retransmit timer (autoconfiguration)

227
return routability test (MIPv6) 322
reverse lookup (DNS) 68, 349
reverse NAT 191
reverse path forwarding (RPF) check

(PIM) 277
reverse zone (DNS) 73–74, 354–355
rewriting filter (packet filter) 55
RFC (request for comments) 34
RIB (routing information base, BGP)

260
ride a bicycle, learning to 10
RIP (routing information protocol)

108
RIPng (routing information proto-

col/IPv6) 108–124
packet filtering 262
poisoned reverse 112
protocol details 111–112
split horizon 112
testing and debugging 110–111
triggered update 112
unsolicited response 112
with Quagga 109–111, 242–246

ripngd daemon (Quagga) 109–111,
242–246

RO (route optimization, MIPv6)
321–322

road warrior problem 216
roaming 5
rogue DHCP server 44
root domain (DNS) 349
routable address 24
route command 11, 106–108

route optimization (RO, MIPv6)
321–322

route, interface 156

route6d daemon (FreeBSD) 109–111

routeadm command (Solaris) 48,
109–111, 238

routed address 24

router 44

router advertisement (RA)

inconsistent 116–117

with Quagga 241

router advertisement (RA, autoconfigu-
ration) 45, 52–53, 116–117

router alert (hop-by-hop option) 268

router configuration (autoconfiguration)
46–49, 223–231

router dead interval (OSPF) 253

router hardware, dedicated VI

router ID (OSPF) 248

router lifetime (autoconfiguration) 52,
226

router performance 115

router priority (autoconfiguration)
226

router renumbering protocol 231

router solicitation (RS, autoconfigura-
tion) 45, 52–53

router, single-legged 110

routing

architecture 112–118

asymmetric 112

basic considerations 112–113

dynamic and static 118–119

static and dynamic 118–119

static or dynamic? 113

through tunnel 156–158

unicast 103–124

routing header, type 2 (MIPv6) 321

routing information base (RIB, BGP)
260

routing information protocol (RIP)
108

routing prefix, global 28

routing table (multicast) 264

RP (rendezvous point, PIM-SM) 278

RP-tree (shared rendezvous point tree,
PIM-SM) 283

RPC (remote procedure call) 97

Index 387

RPC (remote procedure call) and
packet filter 99

rpcbind (RPC daemon) 97

rpcinfo command 98

RPF (reverse path forwarding) check
(PIM) 277

RR (resource record, DNS) 349

RS (router solicitation, autoconfigura-
tion) 45, 52–53

RSVP (resource reservation protocol,
QoS) 328

rtadvd daemon (FreeBSD) 48,
223–231

rtsol (FreeBSD) 50, 54

running configuration (Quagga) 240

SA (security association, IPsec) 313

SAC (stateless address autoconfigura-
tion) see autoconfiguration

SAD (security association database,
IPsec) 313

SADB (security association database,
IPsec) 313

sales pitch 3

sanitizing (packet filter) 56

Sarge, Debian VI

Schmidt, Dr Frank X

scope

multicast 29

unicast 24

scope ID 27

scope nibble (multicast) 29, 263

scp command 89

screen shot VIII

second-level domain (DNS) 349

secondary name server (DNS) 75, 350,
355

secure hypertext transfer protocol
(HTTPS) 93–97

secure shell (OpenSSH) 88–89

secure socket layer (SSL) 93

secure tunnel architectures 178–179

security

automatic tunnel 159

configured tunnel 159

dynamic routing 117–118

precautions 12–13

security association (SA, IPsec) 313

security association database (SAD,
IPsec) 313

security parameter index (SPI, IPsec)
313

security policy database (SPD, IPsec)
312

security, treacherous feeling of (NAT)
10

semantic, first match (packet filter) 16
semantic, last match (packet filter) 16
sender (multicast) 264
sendmail (MTA) 92–93
server, dual-stacked 128–129
service, IPv6-enabled 81–82, 98–99
session initiation protocol (SIP) and

DHCPv6 293–294
setting up a test environment 10–12
share command (Solaris) 98
shared rendezvous point tree (RP-tree,

PIM-SM) 283
shell transcript VIII
shell, bash 11
shell, Bourne VIII
shortest path first (SPF) tree (OSPF)

251
shortest path tree (SP-tree, PIM-SM)

283
show address configuration 37–38
show interface configuration 37–38
showmount command 98
SIIT (stateless IP/ICMP translation)

136
simple mail transfer protocol (SMTP)

92–93
single-legged router 110
SIP (session initiation protocol) and

DHCPv6 293–294
sit〈n〉 interface (Linux) 160
sit〈n〉 interface (Linux, tunnel) 152
sit0 interface (Linux) 158
site, definition of 212
site-local multicast scope 29
site-local scope 24, 27
site-local unicast addresses (deprecated)

27–28, 211–214
site-scoped addresses 211–214
SixXS tunnel service provider 9, 190
size, address 21–22
slave (DNS) 75, 350

388 Index

SMTP (simple mail transfer protocol)
92–93

SMTP relay 132
smurf attack 5
sniffer, packet 12
snoop (packet sniffer) 12
SOA (start of authority) record (DNS)

353
sockstat command (FreeBSD) 87
soft migration 8
soft renumbering 336–339
software, IPv6-enabled 81–82, 98–99
Solaris 10 VI
solicited router advertisement (RA,

autoconfiguration) 45
solicited-node multicast group 41
source address selection 221–222
source validation (packet filter) 56–57,

121–124, 343
source-based-forwarding tree (SP-tree,

PIM-SM) 283
source-specific multicast (SSM)

283–284
source-specific route (S, G) (multicast)

264
SP-tree (shortest path tree, PIM-SM)

283
SPD (security policy database, IPsec)

312
SPF (shortest path first) tree (OSPF)

251
SPI (security parameter index, IPsec)

313
split horizon (RIPng) 112
spoofing (ingress) filter 56–57,

121–124, 343
Squid (web proxy) 95
ssh command 88–89
sshd daemon 88–89
SSL (secure socket layer) 93
SSM (source-specific multicast)

283–284
stack, TCP/IP 6
stale (ND state) 42
standard (RFC) 34
startup configuration (Quagga) 240
state, address (autoconfiguration)

51–52
state, neighbor discovery 41–42

stateful filter (packet filter) 16, 55
stateless (address) autoconfiguration

see autoconfiguration
stateless DHCP see DHCPv6
stateless filter (packet filter) 55
stateless IP/ICMP translation (SIIT)

136
static address configuration 35–40
static and dynamic routing, unicast

118–119
static route configuration (Quagga)

241
static route configuration (Solaris)

108
static routing, unicast 106–108,

118–119, 121–123
Stevens, W. Richard 6
stf0 interface (FreeBSD) 161
stratum (NTP) 131
stub area (OSPF) 259
subinterface 25
subnet ID 28
subnet prefix 25
subnet prefix information (autoconfigu-

ration) 228–230
subnet router anycast address 30
successful disaster recovery 12
supplement, online VII
support level 81–82
support, kernel, IPv6 13–16
switchover, great 8
SYN flag (TCP) 99
synchronization, time (NTP) 89–91
sysctl command (Debian, FreeBSD)

15
sysklogd (Linux) 91
syslog

configuration 12
IPv6 support 91–92
packet filter 99
proxy 132

syslog-ng (Linux) 91
syslogd daemon 91–92

TC (traffic class) field (base header,
QoS) 31, 328

TCP (packet filter) 99–100
TCP (transmission control protocol) 7
TCP/IP offload engine (TOE) 115

Index 389

TCP/IP stack 6
tcpdump (packet sniffer) 12
TCPv6 7
telephony, IP 6
temporary address configuration

36–38
temporary addresses 216–220
tentative address (autoconfiguration)

51
Teredo tunnel 182–183
termcap syntax (rtadvd) 224
test environment, setting up a 10–12
tethereal (packet sniffer) 12
thesis, PhD VI
Thicknet 10
time synchronization (NTP) 89–91
time to live (TTL) field (IPv4 header)

32, 193, 196
time to live (TTL, DNS) 349
TLS (transport layer security) 93
TOE (TCP/IP offload engine) 115
top-level domain (DNS) 349
TOS (type of service, IPv4 header) 31
totd (trick-or-treat daemon) 138–140
traceroute/traceroute6 command

11
traffic class (TC) field (base header,

QoS) 31, 328
traffic shaping (QoS) 328–329
transaction signature (TSIG, dynamic

DNS) 301, 303
transcript, shell VIII
transient multicast address 29
translation, protocol 135–140
transmission control protocol (TCP) 7
transport layer 7
transport layer security (TLS) 93
transport mode (IPsec) 312
transport relay translation (TRT) 136
treacherous feeling of security (NAT)

10
trick-or-treat daemon (totd) 138–140
triggered update (RIPng) 112
TRT (transport relay translation) 136
TSIG (transaction signature, dynamic

DNS) 301, 303
TTL (time to live) field (IPv4 header)

32, 193, 196
TTL (time to live, DNS) 349

tunnel see 4in6, 6in4, 6in6, 6to4,
automatic tunnel, configured
tunnel, encapsulation

6over4 176–177
broker 189–190
choosing the proper type 147
concepts 143–144
encapsulation limit 194
entry point 144
exit point 144
gif〈n〉 interface (FreeBSD) 153,

170, 173
GRE (generic routing encapsulation)

181–182, 187
gre〈n〉 interface (FreeBSD) 182
hop limit field (base header)

196–197
inner protocol 143
ip.6to4tun〈n〉 interface (Solaris)

161
ip.atun0 interface (Solaris) 158
ip.tun〈n〉 interface (Solaris) 154
ip6.tun〈n〉 interface (Solaris) 171,

173
IPv6-in-UDP-in-IPv4 190
ISATAP (intra-site automatic tunnel

addressing protocol) 177
loop 193–195
maximum transmission unit (MTU)

195–196
meltdown 193
mixing with native connections

197–198
nesting 146, 193–195
network meltdown 193
OpenVPN 183–187
operational issues 145–146
outer protocol 143
packet filter considerations 177–180,

187
parameter tuning 195–197
routing through 156–158
scenarios 145
secure architectures 178–179
security 146, 159, 177–180, 187
service provider 9, 189–190
sit〈n〉 interface (Linux) 152
sit0 interface (Linux) 158
stf0 interface (FreeBSD) 161

390 Index

Teredo 182–183
terminology 143–144
through NAT 190–193
time to live (TTL) field (IPv4 header)

196–197
TTL (time to live) field (IPv4 header)

196–197
types 144–145

tunnel host 143
tunnel layer 150
tunnel mode (IPsec) 312
tunnel node 143
tunnel router 143
type 2 routing header (MIPv6) 321
type of service (TOS, IPv4 header) 31
typographic conventions VIII–X

UDP (packet filter) 99–101
UDP (user datagram protocol) 7
unicast address 25–29

global scope 28
link-local 26
site-local (deprecated) 27–28,

211–214
unique-local 27–28, 211–214

unicast routing 103–124, 233–262
unicast routing, dynamic and static

118–119
unicast routing, static and dynamic

118–119
unicast-prefix-based multicast 285–

286
uniform resource locator (URL) 93–94
unique-local unicast addresses 27–28,

211–214
unprivileged mode (Quagga VTY) 239
unqualified domain name (DNS) 350
unsolicited response (RIPng) 112
unsolicited router advertisement (RA,

autoconfiguration) 45, 53
unspecified address 42
update, online VI
upper layer positive confirmation

(NUD) 41
upstream interface (multicast) 264
URL (uniform resource locator) 93–94
USAGI project (Linux) VI
user datagram protocol (UDP) 7
userland PPP 199

valid address (autoconfiguration) 51

valid lifetime (vltime, autoconfigura-
tion) 52

van Pelt, Pim X
/var/log/debug 12
variable length subnet mask (VLSM,

IPv4) 103
variables, kernel 15–16
version field (base header) 31
virtual interface 25
virtual link (OSPF) 259
virtual machine VII, 11, 12, 272
virtual private network (VPN) 145,

183, 312
virtual terminal (Quagga) 239–240
virtual terminal (VTY, Quagga) 234
virtualized environment VII, 11, 12,

272
VLSM (variable length subnet mask,

IPv4) 103
vltime (valid lifetime, autoconfigura-

tion) 52
VMware VII, 11, 12
VMware, problems with multicasts

272
VoIP (voice over IP) 6
VPN (virtual private network) 145,

183, 312
VTY (Quagga) 239–240
VTY (virtual terminal, Quagga) 234
vtysh command shell (Quagga) 261

watchquagga daemon (Quagga) 261
web browser 94
web proxy 95–97
web server 94–95
Wget (web browser) 94
whatis index 11
wildcard route (∗, G) (multicast) 264
Windows, Microsoft VI
Wireshark (packet sniffer) 12
WWW (world wide web) 93–97

X.509 certificate (IPsec) 314
Xen VII, 11, 12
xinetd daemon 82–85

Zebra (routing framework) 233
zebra daemon (Quagga) 109–111, 234
Zenker, Wolfgang X
zone delegation (DNS) 350, 356
zone index (was: scope ID) 27

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

