DATA fitness INPUT VEK VAHA DOBA_CV POC_PULZ CV_PULZ MAX_PULZ SPOTR_KYSL SKUPINA POHLAVI $ ID; DATALINES; 57 73.37 12.63 58 174 176 39.407 2 M 1 54 79.38 11.17 62 156 165 46.08 2 M 2 52 76.32 9.63 48 164 166 45.441 2 M 3 50 70.87 8.92 48 146 155 54.625 2 M 4 51 67.25 11.08 48 172 172 45.118 2 M 5 54 91.63 12.88 44 168 172 39.203 2 M 6 51 73.71 10.47 59 186 188 45.79 2 M 7 57 59.08 9.93 49 148 155 50.545 2 M 8 49 76.32 9.4 56 186 188 48.673 2 M 9 48 61.24 11.5 52 170 176 47.92 2 M 10 52 82.78 10.5 53 170 172 47.467 2 M 11 44 73.03 10.13 45 168 168 50.541 1 M 12 45 87.66 14.03 56 186 192 37.388 1 M 13 45 66.45 11.12 51 176 176 44.754 1 M 14 47 79.15 10.6 47 162 164 47.273 1 M 15 54 83.12 10.33 50 166 170 51.855 1 M 16 49 81.42 8.95 44 180 185 49.156 1 M 17 51 69.63 10.95 57 168 172 40.836 1 M 18 51 77.91 10 48 162 168 46.672 1 Z 19 48 91.63 10.25 48 162 164 46.774 1 Z 20 49 73.37 10.08 76 168 168 50.388 1 Z 21 44 89.47 11.37 62 178 182 44.609 0 Z 22 40 75.07 10.07 62 185 185 45.313 0 Z 23 44 85.84 8.65 45 156 168 54.297 0 Z 24 42 68.15 8.17 40 166 172 59.571 0 Z 25 38 89.02 9.22 55 178 180 49.874 0 Z 26 47 77.45 11.63 58 176 176 44.811 0 Z 27 40 75.98 11.95 70 176 180 45.681 0 Z 28 43 81.19 10.85 64 162 170 49.091 0 Z 29 44 81.42 13.08 63 174 176 39.442 0 Z 30 38 81.87 8.63 48 170 186 60.055 0 Z 31 ; PROC PRINT; RUN;
p<0,05 - zamitame H0
H0: ma normal
velke soubory
data work.prestupky2; proc univariate data=work.prestupky2 normal plot; histogram pokuta/kernel normal; qqplot pokuta/normal (mu=est sigma=est); var pokuta; run; proc boxplot data=work.prestupky2; plot pokuta*pohlavi; plot pokuta*pohlavi / boxstyle=schematic; plot pokuta*pohlavi / notches; run; proc univariate data=work.prestupky2 winsor=2; var pokuta; run; proc means data=work.prestupky2 mean clm maxdec=2; var pokuta; run; proc univariate data=work.prestupky2 cibasic; var pokuta; run; proc univariate data=work.prestupky2 cibasic mu0=1335; var pokuta; run;
male soubory
data stat; input vyuka @@; datalines ; 90 85 98 87 65 88 93 85 97 103 ; proc univariate data=stat normal plot; histogram vyuka/kernel normal; qqplot vyuka/normal (mu=est sigma=est); var vyuka; run;
3. cv
proc reg data=fitness model spotr_kysl = doba_cv; plot spotr_kysl*doba_cv; plot r.*p.; symbol v=star; run; proc reg data=work.fitness; model spotr_kysl = doba_cv/r influence spec; plot spotr_kysl*doba_cv; plot r.*p.; symbol v=star; run; proc reg data=work.fitness; model spotr_kysl = doba_cv vek/r vif influence spec; plot r.*p.; symbol v=star; run;
4. cv
proc boxplot data=work.teploty; plot vysledky*mesic; run; proc glm data=work.teploty; class mesic; model vysledky=mesic; means mesic/hovtest tukey scheffe lsd sidak; run; proc npar1way data=work.teploty wilcoxon; class mesic; var vysledky; run;
5. cv
## pearson chi squared data souhlas; input vzdelani $ prirazka $ pocet @@; datalines; ano ano 50 ano ne 7 ano nevim 11 ne ano 14 ne ne 23 ne nevim 20 ; proc freq data=souhlas; tables vzdelani*prirazka /expected chisq measures norow nocol nopercent; weight pocet; run; ## Fischer (pokud pearson varuje, ze 33% cetnosti je < 5) data zakon; input zmena $ nakup $ pocet @@; datalines; ano denne 27 ano nekolikrat_t 79 ano jednou_t 13 ano jednou_14 2 ne denne 38 ne nekolikrat_t 79 ne jednou_t 24 ne jednou_14 3 ; proc freq data=zakon; tables zmena*nakup/expected chisq measures norow nocol nopercent exact; weight pocet; run; chisq p-value H0: neexistuje zavislost lambda asymetric C|R = % data zkouska; input skola $ splneno $ pocet @@; datalines; gympl ano 45 ss ano 22 uc ano 7 gympl ne 7 ss ne 10 uc ne 9 ; proc freq data=zkouska; tables skola*splneno/expected chisq measures norow nocol nopercent; weight pocet; run; data semena; input osetreno $ vyklicilo $ pocet @@; datalines; ne ano 70 ne ne 30 ano ano 130 ano ne 130 ; proc freq data=semena; tables osetreno*vyklicilo /expected chisq measures norow nocol nopercent; weight pocet; run;
t-test
proc ttest data=mesta h0=1335; run;
data work.prestupky2; proc univariate data= work.prestupky2 normal plot; histogram body/kernel normal; qqplot body/normal (mu= est sigma= est); var body; run; data work.prestupky2; proc boxplot data= work.prestupky2; plot body*pohlavi/boxstyle=schematic; plot body*pohlavi/notches; run; data work prestupky2; proc univariate data= work.prestupky2 trimmed=2; var body; run; data work prestupky2; proc univariate data= work.prestupky2 winsorized=2; var body; run; data work prestupky2; proc means data= work.prestupky2 mean cv clm maxdec=2; var body; title "Interval spolehlivosti pro průměr"; run; data work prestupky2; proc univariate data= work.prestupky2 cibasic; var body; title "Basic Confidence Limits Assuming Normality - IS pro základní popisné statistiky"; run; data stat; input vyuka @@; datalines; 98 79 88 64 80 92 67 88 90 60 63 67 ; proc univariate data= stat normal plot; histogram vyuka/kernel normal; qqplot vyuka/normal (mu= est sigma= est); var vyuka; run;
data fitness; input vek doba_cv spotr_kysl; datalines; 57 12.63 39.407 54 11.17 46.08 52 9.63 45.441 50 8.92 54.625 51 11.08 45.118 54 12.88 39.203 51 10.47 45.79 57 9.93 50.545 49 9.4 48.673 48 11.5 47.92 52 10.5 47.467 44 10.13 50.541 45 14.03 37.388 45 11.12 44.754 47 10.6 47.273 54 10.33 51.855 49 8.95 49.156 51 10.95 40.836 51 10 46.672 48 10.25 46.774 49 10.08 50.388 44 11.37 44.609 40 10.07 45.313 44 8.65 54.297 42 8.17 59.571 38 9.22 49.874 47 11.63 44.811 40 11.95 45.681 43 10.85 49.091 44 13.08 39.442 38 8.63 60.055 ; proc means data= fitness n mean cv median min max std skewness kurtosis max maxdec= 2; var vek doba_cv spotr_kysl; run; kurt: 1+ = spicaty (light tail), -1- = placaty (heavy tail); +-3 silne\\ skew: 0.8 +vpravo -vlevo proc univariate data= fitness normal plot; var vek doba_cv spotr_kysl; run; proc corr data= fitness plots= matrix (histogram); run; proc corr data= fitness nosimple fisher; run; proc corr data= fitness nosimple; var doba_cv spotr_kysl; partial vek; run; proc corr data= fitness nosimple; var vek spotr_kysl; partial doba_cv; run; proc corr data= fitness nosimple pearson spearman; run; proc reg data= fitness; model spotr_kysl = doba_cv; plot spotr_kysl*doba_cv; symbol v=star; run; proc reg data= fitness; model spotr_kysl = doba_cv/r influence spec; plot spotr_kysl*doba_cv; plot r.*p.; symbol v= star; run;
proc reg data= fitness; model spotr_kysl = doba_cv/r influence spec; plot spotr_kysl*doba_cv; plot r.*p.; symbol v= star; run;
proc reg data= work.fitness; model spotr_kysl = doba_cv/r influence spec; plot spotr_kysl*doba_cv; plot r.*p.; symbol v= star; run; proc reg data= work.fitness; model spotr_kysl = doba_cv vek/r vif influence spec; plot r.*p.; symbol v= star; run; quit; proc reg data= work.fitness; model spotr_kysl = doba_cv vek vaha/r vif influence spec; plot r.*p.; symbol v= star; run; quit; proc reg data= work.fitness; Forward:model spotr_kysl = vek vaha doba_cv max_pulz/selection=f; Backward:model spotr_kysl = vek vaha doba_cv max_pulz/selection=b; Stepwise:model spotr_kysl = vek vaha doba_cv max_pulz/selection=stepwise; R_square:model spotr_kysl = vek vaha doba_cv max_pulz/selection=rsquare; run; quit; proc reg data= work.fitness; Forward:model spotr_kysl = vek vaha doba_cv max_pulz/selection=f details= summary; Backward:model spotr_kysl = vek vaha doba_cv max_pulz/selection=b details= summary; Stepwise:model spotr_kysl = vek vaha doba_cv max_pulz/selection=stepwise details= summary; R_square:model spotr_kysl = vek vaha doba_cv max_pulz/selection=rsquare details= summary; run; quit;
data teplota; input mesic $ vysledky @@; datalines; leden 1.00 leden 0.64 leden 1.22 leden 1.19 leden 0.62 leden 0.87 leden 1.23 leden 0.96 leden 0.92 leden 1.11 unor 1.06 unor 0.88 unor 1.04 unor 1.66 unor 1.06 unor 1.07 unor 0.87 unor 0.97 unor 2.00 unor 1.09 brezen 1.19 brezen 1.77 brezen 1.46 brezen 1.58 brezen 1.55 brezen 1.22 brezen 1.64 brezen 1.35 brezen 1.29 brezen 1.41 ; proc boxplot data= teplota; plot vysledky*mesic/boxstyle = schematic; plot vysledky*mesic/notches; run; proc means data= teplota n mean median min max std cv skewness kurtosis maxdec=2; class mesic; var vysledky; run; proc univariate data= teplota noprint; class mesic; histogram vysledky/normal; qqplot vysledky/normal (mu= est sigma= est)nrows =3; run; proc glm data= teplota; class mesic; model vysledky= mesic; means mesic/hovtest tukey; run; proc npar1way data= teplota wilcoxon; class mesic; var vysledky; run;
proc boxplot data= work.trzby; plot trzby*prodejna/boxstyle = schematic; plot trzby*prodejna/notches; run; proc means data= work.trzby n mean median min max std cv skewness kurtosis maxdec=2; class prodejna; var trzby; run; proc univariate data= work.trzby noprint; class prodejna; histogram trzby/normal; qqplot trzby/normal (mu= est sigma= est)nrows =3; run; proc glm data= work.trzby; class prodejna; model trzby= prodejna; means prodejna/hovtest tukey; run; proc npar1way data= work.trzby wilcoxon; class prodejna; var trzby; run;
1. prikad
data souhlas; input vzdelani $ prirazka $ pocet @@; datalines; ano ano 50 ano ne 7 ano nevim 11 ne ano 14 ne ne 23 ne nevim 20 ; proc freq data = souhlas; tables vzdelani*prirazka/expected chisq measures norow nocol nopercent; weight pocet; run;
2. priklad
data zakon; input zmena $ nakup $ pocet @@; datalines; ano denne 27 ano nekolik_t 79 ano jednou_t 13 ano jednou_14 2 ne denne 38 ne nekolik_t 79 ne jednou_t 24 ne jednou_14 3 ; proc freq data = zakon; tables zmena*nakup/expected chisq measures norow nocol nopercent exact; weight pocet; run;
3. priklad
data zkouska; input slozeni_zk $ skola $ pocet @@; datalines; ano gymnazium 45 ano stredni_od 22 ano uciliste 7 ne gymnazium 7 ne stredni_od 10 ne uciliste 9 ; proc freq data = zkouska; tables slozeni_zk*skola/expected chisq measures norow nocol nopercent exact; weight pocet; run;
data work.kriminalita; proc princomp data= work.kriminalita out= components plots=score (ellipse ncomp=2); var kriminalita_celkem obecna_kriminalita hospodarska_kriminalita loupeze vloupani vrazdy; id kraj; run; proc gplot data=components; plot prin2*prin1/vref=0 href=0; symbol v=star pointlabel= (j=r position=middle "#kraj"); run; proc cluster data= work.kriminalita method=ave std; id kraj; run;
> setwd("C:/Users/C24-11/Desktop") > read.csv("mzdy.csv"); rok.mzda 1 1992;4644 2 1993;5904 3 1994;7004 4 1995;8307 5 1996;9825 6 1997;10802 7 1998;11801 8 1999;12797 9 2000;13219 10 2001;14378 11 2002;15524 12 2003;16430 13 2004;17466 14 2005;18344 15 2006;19546 16 2007;20957 17 2008;22592 18 2009;23344 19 2010;23797 20 2011;24319 > data = read.csv("mzdy.csv"); > View(data) > View(data) > data = read.csv("mzdy.csv", header=T, sep=";"); > y = data$mzda; > x = data$rok; > View(data) > View(y); > boxplot(y); > plot(y~x) > summary(data) rok mzda Min. :1992 Min. : 4644 1st Qu.:1997 1st Qu.:10558 Median :2002 Median :14951 Mean :2002 Mean :15050 3rd Qu.:2006 3rd Qu.:19899 Max. :2011 Max. :24319 > summary(y) Min. 1st Qu. Median Mean 3rd Qu. Max. 4644 10560 14950 15050 19900 24320 > install.packages("outliers") Installing package into ‘C:/Users/C24-11/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/outliers_0.14.zip' Content type 'application/zip' length 52663 bytes (51 KB) downloaded 51 KB package ‘outliers’ successfully unpacked and MD5 sums checked The downloaded binary packages are in C:\Users\C24-11\AppData\Local\Temp\Rtmpw9vBez\downloaded_packages > outliers(y) Error: could not find function "outliers" > outliers::outlier(y) > y[y<4645] <-NA > data$dummy <- ifelse(data$rok > 2003, c(1), c(0))
# zpožděné proměnné shift<-function(x,shift_by){ stopifnot(is.numeric(shift_by)) stopifnot(is.numeric(x)) if (length(shift_by)>1) return(sapply(shift_by,shift, x=x)) out<-NULL abs_shift_by=abs(shift_by) if (shift_by > 0 ) out<-c(tail(x,-abs_shift_by),rep(NA,abs_shift_by)) else if (shift_by < 0 ) out<-c(rep(NA,abs_shift_by), head(x,-abs_shift_by)) else out<-x out }
setwd("C:/Users/C24-21.ADDS.002/Desktop") data = read.csv("mzdy.csv", header=T, sep=";"); y = data$mzda; x = data$rok; data <- data.frame(y,x) data$yl <- shift(data$y, -1) data$yl3 <- shift(data$y, -3) data$yd <- (data$y - data$yl) data$yr <- (data$y / data$yl) spotreba = read.csv("spotreba.csv", header=T, sep=";"); y = spotreba$Sp_VM x1 = spotreba$SpC_VM x2 = spotreba$SpC_HM x3 = spotreba$SpC_DM x4 = spotreba$Prijem x0 = matrix(1,11,1) X = cbind(x0, x1, x2, x3, x4) A = t(X)%*%X B = solve(A) C = t(X)%*%y coef = B%*%C View(coef) fit = lm(formula = y~x1+x2+x3+x4, data = spotreba) summary(fit)
#LRM verifikace data = read.csv("spotreba.csv", header = T, sep = ";") data$konst <- c(1) y = data$Sp_VM x0 = data$konst x1 = data$SpC_VM x2 = data$SpC_HM x3 = data$SpC_DM x4 = data$Prijem X = cbind(x0, x1, x2, x3, x4) K = solve(t(X)%*%X) coef = K%*%t(X)%*%y View (coef) teor = X%*%coef # vektor teoretickych hodnot zavisle promenne res = y - teor # vektor rezidui RSS = sum(res*res) a = y-mean(y) TSS = sum(a*a) KD = 1-(RSS/TSS) n = length(y) k = length(coef) KKD = 1 - (1 - KD) * ((n - 1)*(n - k)) KRR = RSS/(n-k) Rg1 = KRR*K[1,1] SCHg1 = sqrt(Rg1) tg1 = coef[1,1]/SCHg1 fit = lm(y~x1+x2+x3+x4) summary(fit) tseries::jarque.bera.test(res) lmtest::dwtest(y~x1+x2+x3+x4)
#Dalsi triky s R: print(cbind(rbind(1,2,3),rbind(4,5,6))) print(rbind(cbind(1,2,3),cbind(4,5,6))) #rbind() = sklada prvky pod sebe (rows) #cbind() = sklada prvky vedle sebe (columns) #takze lze jejich kombinaci zadat matici po sloupcich i po radkach podle potreby.. #print() = jako View() ale vypisuje do stavajici konzole misto otvirani novyho okna
cvicebnice do strany 28
#odhad logaritmickyho modelu ala gretl setwd("C:/Users/C24-17.ADDS.001/Desktop") data = read.csv("spotreba.csv", header = T, sep = ";") data$konst <- c(1) ly = log(data$Sp_VM) x0 = data$konst lx1 = log(data$SpC_VM) lx2 = log(data$SpC_HM) lx3 = log(data$Prijem) #prvni zpusob vypoctu odhadu fit = lm(ly~lx1+lx2+lx3) summary(fit) coef = fit$coefficients gama0 = exp(coef[1]) #druhej zpusob vypoctu odhadu X = cbind(x0, lx1, lx2, lx3) A = t(X)%*%X B = solve(A) C = t(X)%*%ly coef2 = B%*%C View(coef2)
#nejsem si jistej co to pocita, ale dela se to takhle :-D setwd("C:/Users/C24-17.ADDS.001/Desktop") data = read.csv("tq.csv", header = T, sep = ";") data$konst <- c(1) y = 1/data$y1 x = 1/data$x1 #c = data$konst fit = lm(y~x) summary(fit) #vypocet parametru coef = fit$coefficients gama0 = 1/coef[1] gama1 = coef[2]*gama0 #testy #install.packages("lmtest") #staci nainstalovat jednou lmtest::reset(y~x) #ramseyuv RESET test lmtest::bptest(y~x) #Breusch–Pagan test - vypocet heteroskedasticity
Gretl → nastroje → spustit GNU R.
otevre se vam novy okno s R a jsou v nem prednacteny data z gretlu v objektu gretldata
prvni promenna z gretlu je tam teda jako gretldata[,1]
, dalsi jako gretldata[,2]
, atd… muzete si to zkusit vypsat/vykreslit
print(gretldata);
plot(gretldata);
print(gretldata[,1]);
plot(gretldata[,1]);
dejme tomu, ze chcem sezonne ocistit prvni promennou z gretlu. pouzijem tyhle prikazy:
fit <- stl(gretldata[,1], s.window=12) print(fit) plot(fit) dev.copy(png,'myplot.png') #dev.copy(svg,'myplot.svg') dev.off() write.csv2(fit$time.series, file="vystup.csv")
gretldata[,1]
je vstupni vektor (nactenej z gretlu), s.window=12
udava, ze mame 12 udaju rocne (data po mesicich).dev….
, tak nesmite zavrit okno s grafemfit$time.series